Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 56(14): 8319-8325, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28644612

ABSTRACT

The fluxional nature of small gold clusters has been exemplified by reversible isomerization between [Au9(PPh3)8]3+ with a crown motif (Au9(C)) and that with a butterfly motif (Au9(B)) induced by association and dissociation with compact counteranions (NO3-, Cl-). However, structural isomerization was suppressed by substitution of the central Au atom of the Au9 core in [Au9(PPh3)8]3+ with a Pd atom: [PdAu8(PPh3)8]2+ with a crown motif (PdAu8(C)) did not isomerize to that with a butterfly motif (PdAu8(B)) upon association with the counteranions. Density functional theory calculation showed that the energy difference between PdAu8(C) and PdAu8(B) is comparable to that between Au9(C) and Au9(B), indicating that the relative stabilities of the isomers are not a direct cause for the suppression of isomerization. Temperature dependence of Debye-Waller factors obtained by X-ray absorption fine-structure analysis revealed that the intracluster bonds of PdAu8(C) were stiffer than the corresponding bonds in Au9(C). Natural bond orbital analysis suggested that the radial Pd-Au and lateral Au-Au bonds in PdAu8(C) are stiffened due to the increase in the ionic nature and decrease in electrostatic repulsion between the surface Au atoms, respectively. We conclude that the formation of stiffer metal-metal bonds by Pd atom doping inhibits the isomerization from PdAu8(C) to PdAu8(B).

3.
Phys Chem Chem Phys ; 18(6): 4822-7, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26806844

ABSTRACT

The gold cluster compounds Au38(SC2H4Ph)24 and [Au25(PPh3)10(SC2H4Ph)5Cl2](2+) are known to possess bi-icosahedral Au23 and Au25 cores, respectively, inside their ligand shells. These Au cores can be viewed as quasi-molecules composed of two Au13 superatoms sharing three and one Au(+) atoms, respectively. In the present work, we studied the structural changes of these gold di-superatomic molecules upon electrooxidation via spectroelectrochemical techniques, X-ray absorption fine structure analysis, and density functional theory calculations. The Au23 core was electrochemically stable, but the Au25 core underwent irreversible structural change. This marked difference in the stability of the oxidized states is ascribed to differences in the bonding scheme of Au13 units and/or the bonding nature of the protecting ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...