Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
NPJ Syst Biol Appl ; 9(1): 63, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110446

ABSTRACT

Assessing the mutagenicity of chemicals is an essential task in the drug development process. Usually, databases and other structured sources for AMES mutagenicity exist, which have been carefully and laboriously curated from scientific publications. As knowledge accumulates over time, updating these databases is always an overhead and impractical. In this paper, we first propose the problem of predicting the mutagenicity of chemicals from textual information in scientific publications. More simply, given a chemical and evidence in the natural language form from publications where the mutagenicity of the chemical is described, the goal of the model/algorithm is to predict if it is potentially mutagenic or not. For this, we first construct a golden standard data set and then propose MutaPredBERT, a prediction model fine-tuned on BioLinkBERT based on a question-answering formulation of the problem. We leverage transfer learning and use the help of large transformer-based models to achieve a Macro F1 score of >0.88 even with relatively small data for fine-tuning. Our work establishes the utility of large language models for the construction of structured sources of knowledge bases directly from scientific publications.


Subject(s)
Mutagens , Mutagens/toxicity , Databases, Factual
2.
J Bone Oncol ; 41: 100486, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37260767

ABSTRACT

Malignant giant-cell tumors are extremely rare bone sarcomas that transform from conventional giant-cell tumors during long periods of treatment. Owing to their rarity, no further analysis of their molecular pathogenesis exists, and thus, no standard treatment has been established. Recently, organoid culture methods have been highlighted for recapturing the tumor microenvironment, and we have applied the culture methods and succeeded in establishing patient-derived organoids (PDO) of rare sarcomas. This study aimed to investigate the genomic characteristics of our established novel organoids from human malignant giant-cell tumors. At our institute, we treated a patient with malignant giant-cell tumor. The remaining sarcoma specimens after surgical resection were cultured according to the air-liquid interface organoid-culture method. Organoids were xenografted into NOD-scid IL2Rgnull mice. The developed tumors were histologically and genomically analyzed to compare their characteristics with those of the original tumors. Genetic changes over time throughout treatment were analyzed, and the genomic status of the established organoid was confirmed. Organoids from malignant giant-cell tumors could be serially maintained using air-liquid interface organoid-culture methods. The tumors developed in xenografted NOD-scid IL2Rgnull mice. After several repetitions of the process, a patient-derived organoid line from the malignant giant-cell tumor was established. Immunohistochemical analyses and next-generation sequencing revealed that the established organoids lacked the H3-3A G34W mutation. The xenografted organoids of the malignant giant-cell tumor had phenotypes histologically and genetically similar to those of the original tumor. The established organoids were confirmed to be derived from human malignant giant-cell tumors. In summary, the present study demonstrated a novel organoid model of a malignant giant-cell tumor that was genetically confirmed to be a malignant transformed tumor. Our organoid model could be used to elucidate the molecular pathogenesis of a malignant giant-cell tumor and develop novel treatment modalities.

3.
Front Oncol ; 12: 893592, 2022.
Article in English | MEDLINE | ID: mdl-35677170

ABSTRACT

Background: Although biological resources are essential for basic and preclinical research in the oncological field, those of sarcoma are not sufficient for rapid development of the treatment. So far, some sarcoma cell lines have been established, however, the success rate was low and the established sarcoma types were frequently biased. Therefore, an efficient culture method is needed to determine the various types of sarcomas. Organoid culture is a 3-dimentional culture method that enables the recapitulation of the tumor microenvironment and the success rate reported is higher than the 2-dimentional culture. The purpose of this study was to report our newly established organoids from human epithelioid sarcoma using the air-liquid interface organoid culture method. Methods: We treated 2 patients with epithelioid sarcoma in our institute. The remaining sarcoma specimens after surgical resection were embedded in collagen type 1 gels according to the air-liquid interface organoid culture method. After serial passages, we xenografted the organoids to NOD-scid IL2Rgnull (NSG) mice. Using the developed tumors, we performed histological and genomic analyses to compare the similarities and differences with the original epithelioid sarcoma from the patient. Results: Organoids from the epithelioid sarcoma could be serially cultured and maintained in collagen type 1 gels for more than 3 passages. Developed orthotopic tumor xenografts were detected in the NSG mice. After the process was repeated severally, the patient derived organoid lines from the epithelioid sarcoma were established. The established organoids showed loss of integrase interactor 1 expression with polymerase chain reaction and immunohistochemical analyses. The xenografted organoids of the epithelioid sarcoma had histologically similar phenotypes with the original tumor and genetically resembled it to some degree. Conclusions: The present study demonstrated 2 novel established organoid models of epithelioid sarcoma, and our organoid models could be used to investigate the molecular pathogenesis and develop a novel treatment.

4.
Mutagenesis ; 37(3-4): 191-202, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35554560

ABSTRACT

Assessing a compound's mutagenicity using machine learning is an important activity in the drug discovery and development process. Traditional methods of mutagenicity detection, such as Ames test, are expensive and time and labor intensive. In this context, in silico methods that predict a compound mutagenicity with high accuracy are important. Recently, machine-learning (ML) models are increasingly being proposed to improve the accuracy of mutagenicity prediction. While these models are used in practice, there is further scope to improve the accuracy of these models. We hypothesize that choosing the right features to train the model can further lead to better accuracy. We systematically consider and evaluate a combination of novel structural and molecular features which have the maximal impact on the accuracy of models. We rigorously evaluate these features against multiple classification models (from classical ML models to deep neural network models). The performance of the models was assessed using 5- and 10-fold cross-validation and we show that our approach using the molecule structure, molecular properties, and structural alerts as feature sets successfully outperform the state-of-the-art methods for mutagenicity prediction for the Hansen et al. benchmark dataset with an area under the receiver operating characteristic curve of 0.93. More importantly, our framework shows how combining features could benefit model accuracy improvements.


Subject(s)
Machine Learning , Mutagens , Mutagens/toxicity , Mutagens/chemistry , Neural Networks, Computer , Mutagenesis
6.
Sci Rep ; 11(1): 4232, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608574

ABSTRACT

Maoto, a traditional kampo medicine, has been clinically prescribed for influenza infection and is reported to relieve symptoms and tissue damage. In this study, we evaluated the effects of maoto as an herbal multi-compound medicine on host responses in a mouse model of influenza infection. On the fifth day of oral administration to mice intranasally infected with influenza virus [A/PR/8/34 (H1N1)], maoto significantly improved survival rate, decreased viral titer, and ameliorated the infection-induced phenotype as compared with control mice. Analysis of the lung and plasma transcriptome and lipid mediator metabolite profile showed that maoto altered the profile of lipid mediators derived from ω-6 and ω-3 fatty acids to restore a normal state, and significantly up-regulated the expression of macrophage- and T-cell-related genes. Collectively, these results suggest that maoto regulates the host's inflammatory response by altering the lipid mediator profile and thereby ameliorating the symptoms of influenza.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Inflammation Mediators/metabolism , Influenza A virus , Influenza, Human/drug therapy , Influenza, Human/etiology , Influenza, Human/metabolism , Plant Preparations/administration & dosage , Transcriptome/drug effects , Animals , Antiviral Agents , Disease Models, Animal , Ephedra sinica , Gene Expression Profiling , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/etiology , Symptom Assessment , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Viral Load/drug effects
7.
NPJ Syst Biol Appl ; 7(1): 6, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504811

ABSTRACT

Lipid mediators are major factors in multiple biological functions and are strongly associated with disease. Recent lipidomics approaches have made it possible to analyze multiple metabolites and the associations of individual lipid mediators. Such systematic approaches have enabled us to identify key changes of biological relevance. Against this background, a knowledge-based pathway map of lipid mediators would be useful to visualize and understand the overall interactions of these factors. Here, we have built a precise map of lipid mediator metabolic pathways (LimeMap) to visualize the comprehensive profiles of lipid mediators that change dynamically in various disorders. We constructed the map by focusing on ω-3 and ω-6 fatty acid metabolites and their respective metabolic pathways, with manual curation of referenced information from public databases and relevant studies. Ultimately, LimeMap comprises 282 factors (222 mediators, and 60 enzymes, receptors, and ion channels) and 279 reactions derived from 102 related studies. Users will be able to modify the map and visualize measured data specific to their purposes using CellDesigner and VANTED software. We expect that LimeMap will contribute to elucidating the comprehensive functional relationships and pathways of lipid mediators.


Subject(s)
Lipid Metabolism/physiology , Lipidomics/methods , Systems Biology/methods , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Humans , Metabolic Networks and Pathways/physiology , Software
8.
Sci Rep ; 10(1): 10881, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616892

ABSTRACT

It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) affect downstream molecular networks and pathways. This study aimed to provide information on the influences of these mutations. The study assessed 36 protein expression profiles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identified 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen-activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identified various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.


Subject(s)
Adenocarcinoma of Lung/genetics , Gene Expression Regulation, Neoplastic , Genes, erbB-1 , Lung Neoplasms/genetics , Mutation, Missense , Neoplasm Proteins/genetics , Point Mutation , Adenocarcinoma of Lung/metabolism , Adult , Aged , Aged, 80 and over , Datasets as Topic , ErbB Receptors/genetics , Female , Gene Regulatory Networks , Humans , Lung Neoplasms/metabolism , Male , Middle Aged , Neoplasm Proteins/metabolism , Proteome , Sequence Deletion , Transcriptome
9.
NPJ Syst Biol Appl ; 5: 42, 2019.
Article in English | MEDLINE | ID: mdl-31798962

ABSTRACT

Designing alternative approaches to efficiently screen chemicals on the efficacy landscape is a challenging yet indispensable task in the current compound profiling methods. Particularly, increasing regulatory restrictions underscore the need to develop advanced computational pipelines for efficacy assessment of chemical compounds as alternative means to reduce and/or replace in vivo experiments. Here, we present an innovative computational pipeline for large-scale assessment of chemical compounds by analysing and clustering chemical compounds on the basis of multiple dimensions-structural similarity, binding profiles and their network effects across pathways and molecular interaction maps-to generate testable hypotheses on the pharmacological landscapes as well as identify potential mechanisms of efficacy on phenomenological processes. Further, we elucidate the application of the pipeline on a screen of anti-ageing-related compounds to cluster the candidates based on their structure, docking profile and network effects on fundamental metabolic/molecular pathways associated with the cell vitality, highlighting emergent insights on compounds activities based on the multi-dimensional deep screen pipeline.


Subject(s)
Computational Biology/methods , High-Throughput Screening Assays/methods , Molecular Docking Simulation/methods , Algorithms , Cluster Analysis , Computer Simulation , Drug Discovery/methods , Metabolic Networks and Pathways , Software
10.
PLoS One ; 14(2): e0212513, 2019.
Article in English | MEDLINE | ID: mdl-30811474

ABSTRACT

Lenvatinib is a multiple receptor tyrosine kinase inhibitor targeting mainly vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) receptors. We investigated the immunomodulatory activities of lenvatinib in the tumor microenvironment and its mechanisms of enhanced antitumor activity when combined with a programmed cell death-1 (PD-1) blockade. Antitumor activity was examined in immunodeficient and immunocompetent mouse tumor models. Single-cell analysis, flow cytometric analysis, and immunohistochemistry were used to analyze immune cell populations and their activation. Gene co-expression network analysis and pathway analysis using RNA sequencing data were used to identify lenvatinib-driven combined activity with anti-PD-1 antibody (anti-PD-1). Lenvatinib showed potent antitumor activity in the immunocompetent tumor microenvironment compared with the immunodeficient tumor microenvironment. Antitumor activity of lenvatinib plus anti-PD-1 was greater than that of either single treatment. Flow cytometric analysis revealed that lenvatinib reduced tumor-associated macrophages (TAMs) and increased the percentage of activated CD8+ T cells secreting interferon (IFN)-γ+ and granzyme B (GzmB). Combination treatment further increased the percentage of T cells, especially CD8+ T cells, among CD45+ cells and increased IFN-γ+ and GzmB+ CD8+ T cells. Transcriptome analyses of tumors resected from treated mice showed that genes specifically regulated by the combination were significantly enriched for type-I IFN signaling. Pretreatment with lenvatinib followed by anti-PD-1 treatment induced significant antitumor activity compared with anti-PD-1 treatment alone. Our findings show that lenvatinib modulates cancer immunity in the tumor microenvironment by reducing TAMs and, when combined with PD-1 blockade, shows enhanced antitumor activity via the IFN signaling pathway. These findings provide a scientific rationale for combination therapy of lenvatinib with PD-1 blockade to improve cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Phenylurea Compounds/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Quinolines/administration & dosage , Animals , Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Gene Expression/drug effects , Gene Expression/immunology , Immunologic Factors/administration & dosage , Interferons/metabolism , Lymphocyte Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms, Experimental/genetics , Protein Kinase Inhibitors/administration & dosage , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
11.
J Biol Chem ; 294(7): 2386-2396, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30573681

ABSTRACT

Interleukin 34 (IL-34) constitutes a cytokine that shares a common receptor, colony-stimulating factor-1 receptor (CSF-1R), with CSF-1. We recently identified a novel type of monocytic cell termed follicular dendritic cell-induced monocytic cells (FDMCs), whose differentiation depended on CSF-1R signaling through the IL-34 produced from a follicular dendritic cell line, FL-Y. Here, we report the functional mechanisms of the IL-34-mediated CSF-1R signaling underlying FDMC differentiation. CRIPSR/Cas9-mediated knockout of the Il34 gene confirmed that the ability of FL-Y cells to induce FDMCs completely depends on the IL-34 expressed by FL-Y cells. Transwell culture experiments revealed that FDMC differentiation requires a signal from a membrane-anchored form of IL-34 on the FL-Y cell surface, but not from a secreted form, in a direct interaction between FDMC precursor cells and FL-Y cells. Furthermore, flow cytometric analysis using an anti-IL-34 antibody indicated that IL-34 was also expressed on the FL-Y cell surface. Thus, we explored proteins interacting with IL-34 in FL-Y cells. Mass spectrometry analysis and pulldown assay identified that IL-34 was associated with the molecular chaperone 78-kDa glucose-regulated protein (GRP78) in the plasma membrane fraction of FL-Y cells. Consistent with this finding, GRP78-heterozygous FL-Y cells expressed a lower level of IL-34 protein on their cell surface and exhibited a reduced competency to induce FDMC differentiation compared with the original FL-Y cells. These results indicated a novel GRP78-dependent localization and specific function of IL-34 in FL-Y cells related to monocytic cell differentiation.


Subject(s)
Cell Differentiation/physiology , Cell Membrane/metabolism , Dendritic Cells, Follicular/metabolism , Gene Expression Regulation/physiology , Heat-Shock Proteins/metabolism , Interleukins/biosynthesis , Monocytes/metabolism , Animals , Cell Line , Cell Membrane/genetics , Dendritic Cells, Follicular/cytology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Interleukins/genetics , Male , Mice , Mice, Inbred BALB C , Monocytes/cytology
12.
mBio ; 9(6)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563907

ABSTRACT

The positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins-more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCE Integrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


Subject(s)
Host-Pathogen Interactions/genetics , Orthomyxoviridae/physiology , Protein Interaction Maps , Virus Replication , Cell Line , Drug Delivery Systems , Drug Discovery , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Protein Binding , Protein Transport , RNA, Small Interfering , Viral Proteins/metabolism
13.
NPJ Syst Biol Appl ; 3: 32, 2017.
Article in English | MEDLINE | ID: mdl-29075514

ABSTRACT

Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1ß, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism.

14.
Nucleic Acids Res ; 44(W1): W507-13, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27131384

ABSTRACT

We present systemsDock, a web server for network pharmacology-based prediction and analysis, which permits docking simulation and molecular pathway map for comprehensive characterization of ligand selectivity and interpretation of ligand action on a complex molecular network. It incorporates an elaborately designed scoring function for molecular docking to assess protein-ligand binding potential. For large-scale screening and ease of investigation, systemsDock has a user-friendly GUI interface for molecule preparation, parameter specification and result inspection. Ligand binding potentials against individual proteins can be directly displayed on an uploaded molecular interaction map, allowing users to systemically investigate network-dependent effects of a drug or drug candidate. A case study is given to demonstrate how systemsDock can be used to discover a test compound's multi-target activity. systemsDock is freely accessible at http://systemsdock.unit.oist.jp/.


Subject(s)
Internet , Pharmacology/methods , Software , Acids, Carbocyclic , Cyclopentanes/chemistry , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Guanidines/chemistry , Guanidines/metabolism , Guanidines/pharmacology , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Ligands , Molecular Docking Simulation , Orthomyxoviridae/drug effects , Orthomyxoviridae/metabolism , Oseltamivir/chemistry , Oseltamivir/metabolism , Oseltamivir/pharmacology , User-Computer Interface
15.
NPJ Syst Biol Appl ; 2: 15018, 2016.
Article in English | MEDLINE | ID: mdl-28725465

ABSTRACT

Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker's or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow-tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow-tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems.

16.
Front Pharmacol ; 6: 186, 2015.
Article in English | MEDLINE | ID: mdl-26388775

ABSTRACT

Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

17.
PLoS Pathog ; 11(6): e1004856, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26046528

ABSTRACT

Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections/immunology , Animals , Blotting, Western , Female , Flow Cytometry , Inflammation/genetics , Inflammation/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/genetics , Transcriptome , Virulence
18.
Cell Host Microbe ; 16(6): 795-805, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25464832

ABSTRACT

Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.


Subject(s)
Antiviral Agents/pharmacology , Influenza, Human/metabolism , Orthomyxoviridae/drug effects , Orthomyxoviridae/metabolism , Protein Interaction Mapping/methods , Protein Interaction Maps/drug effects , Viral Proteins/metabolism , Drug Evaluation, Preclinical , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host-Pathogen Interactions/drug effects , Humans , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Orthomyxoviridae/genetics , Protein Binding/drug effects , Viral Proteins/genetics
19.
J Virol ; 88(16): 8981-97, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24899188

ABSTRACT

UNLABELLED: Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE: Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We identified differences in the viral replicative ability of and in disease severity caused by these H5N1 viruses. A comparison of global host responses between severe and mild disease cases identified the limited upregulation of interferon-stimulated genes early in infection in severe cases. The dynamics of the host responses indicated that the limited response early in infection failed to suppress virus replication and led to hyperinduction of pathological condition-related genes late in infection. These findings provide insight into the pathogenesis of H5N1 viruses in mammals.


Subject(s)
Gene Expression Regulation, Viral/genetics , Gene Expression/genetics , Influenza A Virus, H5N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Primates/virology , Animals , Antigen Presentation/immunology , Apoptosis/immunology , Cells, Cultured , Dogs , Gene Expression/immunology , Gene Expression Regulation, Viral/immunology , Humans , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/virology , Influenza A Virus, H5N1 Subtype/immunology , Macaca/immunology , Macaca/virology , Macaca fascicularis/immunology , Macaca fascicularis/virology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/immunology , Primates/immunology , Respiratory System/immunology , Respiratory System/virology , Severity of Illness Index , Virus Replication/genetics , Virus Replication/immunology
20.
Methods Mol Biol ; 1164: 121-45, 2014.
Article in English | MEDLINE | ID: mdl-24927840

ABSTRACT

In silico modeling and simulation are effective means to understand how the regulatory systems function in life. In this chapter, we explain how to build a model and run the simulation using CellDesigner, adopting the standards such as SBML and SBGN.


Subject(s)
Computer Simulation , Models, Biological , Software , Systems Biology , Animals , Gene Regulatory Networks , Humans , Models, Genetic , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...