Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Res ; 392(3): 705-714, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36918428

ABSTRACT

Aquaporins (AQP) are a family of channel proteins expressed in the cell membranes of many tissue types. As water channels, they enable the selective permeation of water molecules and thus play an important role in water transport through the plasma membrane. There are numerous AQP sub-types, among which AQP5 is expressed in the salivary glands. The expression and localization of AQP5 in different salivary gland cells of animal models during fetal development and after birth have enabled the physiological functions of AQP5 to be elucidated, but subsequent changes in the adult phase are unknown. It is known that saliva production tends to decrease with age, but it is unclear how AQP5 activity and function changes developmentally, from young to old including gender differences. In the present study, we sampled the parotid, submandibular, and sublingual glands from young (8 weeks old) and aged (12 months old) mice of both sexes to study the effects of age- and sex-related differences in AQP5 expression. Positive fluorescence immunostaining was detected in the membranes of cells from all gland types, and this was enhanced in juvenile mice from both sexes. Western blot analyses revealed that AQP5 expression levels tended to decrease with age in both male and female animals. Conversely, AQP5 gene expression levels did not change significantly with aging, but were found to be high in submandibular gland cells of both sexes, in parotid gland cells of older female mice, and in the sublingual gland cells of young male mice.


Subject(s)
Aquaporin 5 , Salivary Glands , Animals , Female , Male , Mice , Aquaporin 5/metabolism , Salivary Glands/metabolism , Sublingual Gland/metabolism , Submandibular Gland/metabolism , Water
2.
J Oral Biosci ; 63(1): 66-73, 2021 03.
Article in English | MEDLINE | ID: mdl-33493674

ABSTRACT

OBJECTIVES: Tooth organ development was examined in a serumless, chemically defined organ culture system to determine whether morphological and functional development was identical to that in in vivo and serum-supplemented organ cultures. METHODS: Mouse mandibular first molar tooth organs at 16 days of gestation were cultured for up to 28 days in a Tronwell culture system using a serum-supplemented or serumless, chemically defined medium. After culture, specimens were processed for assessing tooth development using ultrastructural, immunohistochemical, and mRNA expression analyses. RESULTS: In serum-supplemented conditions, inner enamel epithelial cells differentiated into secretory-stage ameloblasts, which formed enamel and reached the maturation stage after 14 and 21 days of culture, respectively. Ameloblasts deposited a basal lamina on immature enamel. Conversely, in serumless conditions, ameloblasts formed enamel on mineralized dentin after 21 days. Moreover, maturation-stage ameloblasts did not form basal lamina and directly absorbed mineralized enamel after 28 days of culture. RT-PCR analysis indicated that tooth organs, cultured in serumless conditions for 28 days, had significantly reduced expression levels of ODAM, amelotin, and laminin-322. CONCLUSIONS: These results indicate that several differences were detected compared to the development in serum-supplemented conditions, such as delayed enamel and dentin formation and the failure of maturation-stage ameloblasts to form basal laminae. Therefore, our results suggest that some factors might be required for the steady formation of mineralized dentin, enamel, and a basal lamina. Additionally, our results indicate that a basal lamina is necessary for enamel maturation.


Subject(s)
Ameloblasts , Dental Enamel , Amelogenesis/genetics , Animals , Basement Membrane , Mice , Organ Culture Techniques
3.
Microscopy (Oxf) ; 70(3): 302-307, 2021 Jun 06.
Article in English | MEDLINE | ID: mdl-33277903

ABSTRACT

We have previously indicated that a single injection of alendronate, one of the nitrogen-containing bisphosphonates (NBPs), affects murine hematopoietic processes, such as the shift of erythropoiesis from bone marrow (BM) to spleen, disappearance of BM-resident macrophages, the increase of granulopoiesis in BM and an increase in the number of osteoclasts. NBPs induce apoptosis and the formation of giant osteoclasts in vitro and/or in patients undergoing long-term NBP treatment. Therefore, the time-kinetic effect of NBPs on osteoclasts needs to be clarified. In this study, we examined the effect of alendronate on mouse osteoclasts and osteoclastogenesis. One day after the treatment, osteoclasts lost the clear zone and ruffled borders, and the cell size decreased. After 2 days, the cytoplasm of osteoclasts became electron dense and the nuclei became pyknotic. Some of the cells had fragmented nuclei. After 4 days, osteoclasts had euchromatic nuclei attached to the bone surface. Osteoclasts had no clear zones or ruffled borders. After 7 days, osteoclasts formed giant osteoclasts via the fusion of multinuclear and mononuclear osteoclasts. These results indicate that NBPs affect osteoclasts and osteoclastogenesis via two different mechanisms.


Subject(s)
Alendronate/pharmacology , Apoptosis/drug effects , Diphosphonates/pharmacology , Osteoclasts/drug effects , Osteoclasts/ultrastructure , Osteogenesis/drug effects , Alendronate/chemistry , Animals , Bone Density Conservation Agents/pharmacology , Bone and Bones/drug effects , Diphosphonates/chemistry , Erythropoiesis/drug effects , Male , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nitrogen/chemistry
4.
Free Radic Biol Med ; 45(9): 1318-25, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18775490

ABSTRACT

The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.


Subject(s)
Deoxyguanosine/analogs & derivatives , Thymidine/pharmacology , 8-Hydroxy-2'-Deoxyguanosine , Amidines/chemistry , Animals , Cattle , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Dimerization , Mitochondria/metabolism , Models, Chemical , Oxidants/chemistry , Oxygen/chemistry , Peroxides , Substrate Specificity , Thymidine/chemistry , Time Factors
5.
J Biochem ; 134(3): 395-402, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14561725

ABSTRACT

CEL-III is a Ca(2+)-dependent, galactose/N-acetylgalactosamine (GalNAc)-specific lectin isolated from the marine invertebrate Cucumaria echinata. This lectin exhibits strong hemolytic activity and cytotoxicity through pore formation in target cell membranes. The amino acid sequence of CEL-III revealed the N-terminal two-thirds to have homology to the B-chains of ricin and abrin, which are galactose-specific plant toxic lectins; the C-terminal one-third shows no homology to any known proteins. To examine the carbohydrate-binding ability of the N-terminal region of CEL-III, the protein comprising Pyr1-Phe283 was expressed in Escherichia coli cells. The expressed protein showed both the ability to bind to a GalNAc-immobilized column as well as hemagglutinating activity for rabbit erythrocytes, confirming that the N-terminal region has binding activity for specific carbohydrates. Since the C-terminal region could not be expressed in E. coli cells, a fragment containing this region was produced by limited proteolysis of the native protein by trypsin. The resulting C-terminal 15 kDa fragment of CEL-III exhibited a tendency to self-associate, forming an oligomer. When mixed with erythrocytes, the oligomer of the C-terminal fragment caused hemagglutination, probably due to hydrophobic interaction with cell membranes, while the monomeric fragment did not. Chymotryptic digestion of the preformed CEL-III oligomer induced upon lactose binding also yielded an oligomer of the C-terminal fragment comprising six molecules of the 16 kDa fragment. These results suggest that after binding to cell surface carbohydrate chains, CEL-III oligomerizes through C-terminal domains, leading to the formation of ion-permeable pores by hydrophobic interaction with the cell membrane.


Subject(s)
Lectins/chemistry , Sea Cucumbers/chemistry , Abrin/chemistry , Amino Acid Sequence , Animals , Carbohydrate Metabolism , Circular Dichroism , Erythrocyte Membrane/metabolism , Hemolysis , Hydrogen-Ion Concentration , Lectins/genetics , Molecular Sequence Data , Protein Binding , Rabbits , Ricin/chemistry , Sea Cucumbers/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...