Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-39165565

ABSTRACT

The correct localization of proteins is linked to their cellular function. The Schizosaccharomyces pombe Pkd2 localizes to the endoplasmic reticulum and plasma membrane. Here we investigate the behavior of Pkd2 in response to calcium. Pkd2-GFP, normally enriched at the cell ends, is reduced from the plasma membrane by CaCl 2 addition, while cytoplasmic dots and free GFP are increased. This suggests that Pkd2 is internalized and degraded in response to extracellular CaCl 2 . This internalization is partially suppressed by treatment with an Arp2/3 inhibitor, CK-666. Our data provide new insights into the relationship between Pkd2 internalization and calcium response.

2.
FEBS Lett ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034140

ABSTRACT

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.

3.
Open Biol ; 14(3): 230440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442865

ABSTRACT

Microtubule organization and reorganization during the cell cycle are achieved by regulation of the number, distribution and activity of microtubule-organizing centres (MTOCs). In fission yeast, the Mto1/2 complex determines the activity and distribution of cytoplasmic MTOCs. Upon mitosis, cytoplasmic microtubule nucleation ceases; inactivation of the Mto1/2 complex is triggered by Mto2 hyperphosphorylation. However, the protein kinase(s) that phosphorylates Mto2 remains elusive. Here we show that a conserved signalling network, called MOR (morphogenesis Orb6 network) in fission yeast, negatively regulates cytoplasmic MTOCs through Mto2 phosphorylation to ensure proper microtubule organization. Inactivation of Orb6 kinase, the most downstream MOR component, by attenuation of MOR signalling leads to reduced Mto2 phosphorylation, coincident with increased number of both Mto2 puncta and cytoplasmic microtubules. These defects cause the emergence of uncoordinated mitotic cells with cytoplasmic microtubules, resulting in reduced spindle assembly. Thus, the regulation of Mto2 by the MOR is crucial for cytoplasmic microtubule organization and contributes to reorganization of the microtubule cytoskeletons during the cell cycle.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cell Cycle , Mitosis , Phosphorylation , Microtubules , Protein Serine-Threonine Kinases , Cell Cycle Proteins , Schizosaccharomyces pombe Proteins/genetics
4.
Elife ; 122024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319699

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.


In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity ­ that is, exactly which neurons are connected via synapses ­ remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from 'postsynaptic' to 'presynaptic' neurons ­ from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.


Subject(s)
Rabies virus , Animals , Mice , Rabies virus/genetics , Neuroanatomy , Neurons , Sequence Analysis, RNA , RNA
5.
Nat Neurosci ; 27(2): 373-383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212587

ABSTRACT

Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.


Subject(s)
Rabies virus , Rabies virus/genetics , Neurons/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL