Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 173(Pt B): 112941, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34571413

ABSTRACT

Marine litter is a major global concern that is threatening marine ecosystems. This study assessed the meso-litter and microplastics density around Mauritius Island, South West Indian Ocean (SWIO) region. WIOMSA guidelines were used for meso-litter and microplastics sampling from October to December 2019 at 12 sites. A total of 1095 meso-litter items (weighing 1250 g) was sampled. Plastics were the most abundant litter category. 'Shoreline and recreational activities' were the main meso-litter source. Microplastics density was highest at the vegetation line (VL) zone. Fragments, mostly blue-coloured, were the most encountered type of microplastics, and polyethylene was the most prevalent polymer type. This study provides important baseline data which can be used by relevant authorities for more effective waste management strategies and awareness campaigns that will help further mitigate the marine litter problem in Mauritius, and to check the effectiveness of management measures in place.


Subject(s)
Microplastics , Plastics , Bathing Beaches , Ecosystem , Environmental Monitoring , Mauritius , Polyethylene , Waste Products/analysis
2.
Mar Pollut Bull ; 165: 112059, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33677415

ABSTRACT

Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.


Subject(s)
Aquatic Organisms , Chlorophyll , Animals , Chlorophyll A , Fluorescence , Fluorometry , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...