Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 405: 110106, 2024 May.
Article in English | MEDLINE | ID: mdl-38453060

ABSTRACT

BACKGROUND: Single-pulse electrical stimulation (SPES) is an established technique used to map functional effective connectivity networks in treatment-refractory epilepsy patients undergoing intracranial-electroencephalography monitoring. While the connectivity path between stimulation and recording sites has been explored through the integration of structural connectivity, there are substantial gaps, such that new modeling approaches may advance our understanding of connectivity derived from SPES studies. NEW METHOD: Using intracranial electrophysiology data recorded from a single patient undergoing stereo-electroencephalography (sEEG) evaluation, we employ an automated detection method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced by SPES. C1 components were utilized for a novel topology optimization method, modeling 3D electrical conductivity to infer neural pathways from stimulation sites. Additionally, PEP features were compared with tractography metrics, and model results were analyzed with respect to anatomical features. RESULTS: The proposed optimization model resolved conductivity paths with low error. Specific electrode contacts displaying high error correlated with anatomical complexities. The C1 component strongly correlated with additional PEP features and displayed stable, weak correlations with tractography measures. COMPARISON WITH EXISTING METHOD: Existing methods for estimating neural signal pathways are imaging-based and thus rely on anatomical inferences. CONCLUSIONS: These results demonstrate that informing topology optimization methods with human intracranial SPES data is a feasible method for generating 3D conductivity maps linking electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is correlated with but distinguished from structural connectivity. Modeled conductivity resolves connectivity pathways in the absence of anatomical priors.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Evoked Potentials/physiology , Electroencephalography/methods , Electrocorticography/methods , Brain Mapping/methods , Electric Stimulation/methods , Brain/diagnostic imaging
2.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986830

ABSTRACT

Background: Single-pulse electrical stimulation (SPES) is an established technique used to map functional effective connectivity networks in treatment-refractory epilepsy patients undergoing intracranial-electroencephalography monitoring. While the connectivity path between stimulation and recording sites has been explored through the integration of structural connectivity, there are substantial gaps, such that new modeling approaches may advance our understanding of connectivity derived from SPES studies. New Method: Using intracranial electrophysiology data recorded from a single patient undergoing sEEG evaluation, we employ an automated detection method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced by SPES. C1 components were utilized for a novel topology optimization method, modeling 3D conductivity propagation from stimulation sites. Additionally, PEP features were compared with tractography metrics, and model results were analyzed with respect to anatomical features. Results: The proposed optimization model resolved conductivity paths with low error. Specific electrode contacts displaying high error correlated with anatomical complexities. The C1 component strongly correlates with additional PEP features and displayed stable, weak correlations with tractography measures. Comparison with existing methods: Existing methods for estimating conductivity propagation are imaging-based and thus rely on anatomical inferences. Conclusions: These results demonstrate that informing topology optimization methods with human intracranial SPES data is a feasible method for generating 3D conductivity maps linking electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is correlated with but distinguished from structural connectivity. Modeled conductivity resolves connectivity pathways in the absence of anatomical priors.

3.
Sci Data ; 8(1): 253, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588463

ABSTRACT

Quantifying the timing and content of policy changes affecting international travel and immigration is key to ongoing research on the spread of SARS-CoV-2 and the socioeconomic impacts of border closures. The COVID Border Accountability Project (COBAP) provides a hand-coded dataset of >1000 policies systematized to reflect a complete timeline of country-level restrictions on movement across international borders during 2020. Trained research assistants used pre-set definitions to source, categorize and verify for each new border policy: start and end dates, whether the closure is "complete" or "partial", which exceptions are made, which countries are banned, and which air/land/sea borders were closed. COBAP verified the database through internal and external audits from public health experts. For purposes of further verification and future data mining efforts of pandemic research, the full text of each policy was archived. The structure of the COBAP dataset is designed for use by social and biomedical scientists. For broad accessibility to policymakers and the public, our website depicts the data in an interactive, user-friendly, time-based map.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/legislation & jurisprudence , Pandemics/prevention & control , Travel/legislation & jurisprudence , COVID-19/epidemiology , Health Policy , Humans , Internationality , Social Responsibility
SELECTION OF CITATIONS
SEARCH DETAIL
...