Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
2.
Nat Cancer ; 4(9): 1345-1361, 2023 09.
Article in English | MEDLINE | ID: mdl-37743366

ABSTRACT

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.


Subject(s)
Brain Neoplasms , Mutation , Brain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Solvents
3.
Cancer Cell ; 41(4): 776-790.e7, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37001526

ABSTRACT

Paired single-cell RNA and T cell receptor sequencing (scRNA/TCR-seq) has allowed for enhanced resolution of clonal T cell dynamics in cancer. Here, we report a scRNA/TCR-seq analysis of 187,650 T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients with non-small cell lung cancer after immune checkpoint blockade (ICB). Regions with viable cancer cells are enriched for exhausted CD8+ T cells, regulatory CD4+ T cells (Treg), and follicular helper CD4+ T cells (TFH). Tracking T cell clonotypes across tissues, combined with neoantigen specificity assays, reveals that TFH and tumor-specific exhausted CD8+ T cells are clonally linked to TCF7+SELL+ progenitors in tumor draining LNs, and progressive exhaustion trajectories of CD8+ T, Treg, and TFH cells with proximity to the tumor microenvironment. Finally, longitudinal tracking of tumor-specific CD8+ and CD4+ T cell clones reveals persistence in the peripheral blood for years after ICB therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Receptors, Antigen, T-Cell , Clone Cells , Tumor Microenvironment
4.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574773

ABSTRACT

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , CD8-Positive T-Lymphocytes , Immunotherapy
5.
NPJ Precis Oncol ; 6(1): 88, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418460

ABSTRACT

MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of "drug addiction" in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRASG12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a "drug holiday" to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.

6.
JCO Precis Oncol ; 6: e2200048, 2022 08.
Article in English | MEDLINE | ID: mdl-35952322

ABSTRACT

PURPOSE: Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts. METHODS: The data set consisted of patients with ES prospectively tested with the US Food and Drug Administration-cleared Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets large panel, hybrid capture-based next-generation sequencing assay. To assess the functional significance of ERF loss, we generated ES cell lines with increased expression of ERF and lines with knockdown of ERF. We assessed cell viability, clonogenic growth, and motility in these ES lines and performed transcriptomic and epigenetic analyses. Finally, we validated our findings in vivo using cell line xenografts. RESULTS: Novel subsets were defined by recurrent secondary alterations in ERF, which encodes an ETS domain transcriptional repressor, in 7% of patients (five truncating mutations, one deep deletion, and two missense mutations) and in FGFR1 in another 2.7% (one amplification and two known activating mutations). ERF alterations were nonoverlapping with STAG2 alterations. In vitro, increased expression of ERF decreased tumor cell growth, colony formation, and motility in two ES cell lines, whereas ERF loss induced cellular proliferation and clonogenic growth. Transcriptomic analysis of cell lines with ERF loss revealed an increased expression of genes and pathways associated with aggressive tumor biology, and epigenetic, chromatin-based studies revealed that ERF competes with EWSR1-FLI1 at ETS-binding sites. CONCLUSION: Our findings open avenues to new insights into ES pathobiology and to novel therapeutic approaches in a subset of patients with ES.


Subject(s)
Biological Products , Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Adult , Biological Products/therapeutic use , Genomics , Humans , Mutation/genetics , Prospective Studies , Receptor, Fibroblast Growth Factor, Type 1/genetics , Repressor Proteins/genetics , Sarcoma, Ewing/genetics , United States
7.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35613620

ABSTRACT

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Subject(s)
Neurofibromin 1 , Proto-Oncogene Proteins A-raf , ras GTPase-Activating Proteins , ErbB Receptors/genetics , ErbB Receptors/metabolism , Guanosine Triphosphate/metabolism , Humans , Neurofibromin 1/metabolism , Protein Binding , Proto-Oncogene Proteins A-raf/metabolism , Signal Transduction , ras GTPase-Activating Proteins/metabolism
8.
Nat Commun ; 13(1): 2526, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534471

ABSTRACT

Resistance mechanisms and heterogeneity in HER2-positive gastric cancers (GC) limit Trastuzumab benefit in 32% of patients, and other targeted therapies have failed in clinical trials. Using patient samples, patient-derived xenografts (PDXs), partially humanized biological models, and HER2-targeted imaging technologies we demonstrate the role of caveolin-1 (CAV1) as a complementary biomarker in GC selection for Trastuzumab therapy. In retrospective analyses of samples from patients enrolled on Trastuzumab trials, the CAV1-high profile associates with low membrane HER2 density and low patient survival. We show a negative correlation between CAV1 tumoral protein levels - a major protein of cholesterol-rich membrane domains - and Trastuzumab-drug conjugate TDM1 tumor uptake. Finally, CAV1 depletion using knockdown or pharmacologic approaches (statins) increases antibody drug efficacy in tumors with incomplete HER2 membranous reactivity. In support of these findings, background statin use in patients associates with enhanced antibody efficacy. Together, this work provides preclinical justification and clinical evidence that require prospective investigation of antibody drugs combined with statins to delay drug resistance in tumors.


Subject(s)
Breast Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Stomach Neoplasms , Breast Neoplasms/drug therapy , Caveolin 1/genetics , Caveolin 1/metabolism , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Prospective Studies , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Retrospective Studies , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
9.
JCO Precis Oncol ; 6: e2100242, 2022 02.
Article in English | MEDLINE | ID: mdl-35138918

ABSTRACT

PURPOSE: Comprehensive genomic profiling has defined key oncogenic drivers and distinct molecular subtypes in esophagogastric cancer; however, the number of clinically actionable alterations remains limited. To establish preclinical models for testing genomically driven therapeutic strategies, we generated and characterized a large collection of esophagogastric cancer patient-derived xenografts (PDXs). MATERIALS AND METHODS: We established a biobank of 98 esophagogastric cancer PDX models derived from primary tumors and metastases. Clinicopathologic features of each PDX and the corresponding patient sample were annotated, including stage at diagnosis, treatment history, histology, and biomarker profile. To identify oncogenic DNA alterations, we analyzed and compared targeted sequencing performed on PDX and parent tumor pairs. We conducted xenotrials in genomically defined models with oncogenic drivers. RESULTS: From April 2010 to June 2019, we implanted 276 patient tumors, of which 98 successfully engrafted (35.5%). This collection is enriched for PDXs derived from patients with human epidermal growth factor receptor 2-positive esophagogastric adenocarcinoma (62 models, 63%), the majority of which were refractory to standard therapies including trastuzumab. Factors positively correlating with engraftment included advanced stage, metastatic origin, intestinal-type histology, and human epidermal growth factor receptor 2-positivity. Mutations in TP53 and alterations in receptor tyrosine kinases (ERBB2 and EGFR), RAS/PI3K pathway genes, cell-cycle mediators (CDKN2A and CCNE1), and CDH1 were the predominant oncogenic drivers, recapitulating clinical tumor sequencing. We observed antitumor activity with rational combination strategies in models established from treatment-refractory disease. CONCLUSION: The Memorial Sloan Kettering Cancer Center PDX collection recapitulates the heterogeneity of esophagogastric cancer and is a powerful resource to investigate mechanisms driving tumor progression, identify predictive biomarkers, and develop therapeutic strategies for molecularly defined subsets of esophagogastric cancer.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Esophageal Neoplasms/drug therapy , Genomics , Heterografts , Humans , Phosphatidylinositol 3-Kinases/metabolism , Stomach Neoplasms/drug therapy , Xenograft Model Antitumor Assays
10.
Cancer Discov ; 12(5): 1233-1247, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35135829

ABSTRACT

NRG1 rearrangements are recurrent oncogenic drivers in solid tumors. NRG1 binds to HER3, leading to heterodimerization with other HER/ERBB kinases, increased downstream signaling, and tumorigenesis. Targeting ERBBs, therefore, represents a therapeutic strategy for these cancers. We investigated zenocutuzumab (Zeno; MCLA-128), an antibody-dependent cellular cytotoxicity-enhanced anti-HER2xHER3 bispecific antibody, in NRG1 fusion-positive isogenic and patient-derived cell lines and xenograft models. Zeno inhibited HER3 and AKT phosphorylation, induced expression of apoptosis markers, and inhibited growth. Three patients with chemotherapy-resistant NRG1 fusion-positive metastatic cancer were treated with Zeno. Two patients with ATP1B1-NRG1-positive pancreatic cancer achieved rapid symptomatic, biomarker, and radiographic responses and remained on treatment for over 12 months. A patient with CD74-NRG1-positive non-small cell lung cancer who had progressed on six prior lines of systemic therapy, including afatinib, responded rapidly to treatment with a partial response. Targeting HER2 and HER3 simultaneously with Zeno is a novel therapeutic paradigm for patients with NRG1 fusion-positive cancers. SIGNIFICANCE: NRG1 rearrangements encode chimeric ligands that activate the ERBB receptor tyrosine kinase family. Here we show that targeting HER2 and HER3 simultaneously with the bispecific antibody Zeno leads to durable clinical responses in patients with NRG1 fusion-positive cancers and is thus an effective therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1171.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antibodies, Bispecific , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Gene Rearrangement , Humans , Immunoglobulin G , Lung Neoplasms/genetics , Neuregulin-1/genetics , Receptor, ErbB-2 , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
11.
Mol Cancer Res ; 20(5): 722-734, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35149545

ABSTRACT

Targeted therapy of ROS1-fusion-driven non-small cell lung cancer (NSCLC) has achieved notable clinical success. Despite this, resistance to therapy inevitably poses a significant challenge. MYC amplification was present in ∼19% of lorlatinib-resistant ROS1-driven NSCLC. We hypothesized that MYC overexpression drives ROS1-TKI resistance. Using complementary approaches in multiple models, including a MYC-amplified patient-derived cell line and xenograft (LUAD-0006), we established that MYC overexpression induces broad ROS1-TKI resistance. Pharmacologic inhibition of ROS1 combined with MYC knockdown were essential to completely suppress LUAD-0006 cell proliferation compared with either treatment alone. We interrogated cellular signaling in ROS1-TKI-resistant LUAD-0006 and discovered significant differential regulation of targets associated with cell cycle, apoptosis, and mitochondrial function. Combinatorial treatment of mitochondrial inhibitors with crizotinib revealed inhibitory synergism, suggesting increased reliance on glutamine metabolism and fatty-acid synthesis in chronic ROS1-TKI treated LUAD-0006 cells. In vitro experiments further revealed that CDK4/6 and BET bromodomain inhibitors effectively mitigate ROS1-TKI resistance in MYC-overexpressing cells. Notably, in vivo studies demonstrate that tumor control may be regained by combining ROS1-TKI and CDK4/6 inhibition. Our results contribute to the broader understanding of ROS1-TKI resistance in NSCLC. IMPLICATIONS: This study functionally characterizes MYC overexpression as a novel form of therapeutic resistance to ROS1 tyrosine kinase inhibitors in non-small cell lung cancer and proposes rational combination treatment strategies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proto-Oncogene Proteins c-myc/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins
12.
Cancer Res ; 82(6): 1110-1127, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35074756

ABSTRACT

Kinase fusions have been identified in a growing subset of sarcomas, but a lack of preclinical models has impeded their functional analysis as therapeutic targets in the sarcoma setting. In this study, we generated models of sarcomas bearing kinase fusions and assessed their response to molecularly targeted therapy. Immortalized, untransformed human mesenchymal stem cells (HMSC), a putative cell of origin of sarcomas, were modified using CRISPR-Cas9 to harbor a RET chromosomal translocation (HMSC-RET). In parallel, patient-derived models of RET- and NTRK-rearranged sarcomas were generated. Expression of a RET fusion activated common proliferation and survival pathways and transformed HMSC cells. The HMSC-RET models displayed similar behavior and response to therapy as the patient-derived counterparts in vitro and in vivo. Capicua (CIC)-mediated suppression of negative MAPK pathway regulators was identified as a potential mechanism by which these sarcomas compensate for RET or NTRK inhibition. This CIC-mediated feedback reactivation was blocked by coinhibition of the MAPK pathway and RET or NTRK in the respective models. Importantly, the combination of RET and ERK inhibitors was more effective than single agents at blocking tumor growth in vivo. This work offers new tools and insights to improve targeted therapy approaches in kinase-addicted sarcomas and supports upfront combination therapy to prolong responses. SIGNIFICANCE: Novel models of kinase-rearranged sarcomas show that MAPK pathway feedback activation dampens responses to tyrosine kinase inhibitors, revealing the potential of combinatorial therapies to combat these tumors.


Subject(s)
MAP Kinase Signaling System , Protein Kinase Inhibitors , Sarcoma , Soft Tissue Neoplasms , Humans , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/metabolism , Signal Transduction , Soft Tissue Neoplasms/pathology
13.
Dis Model Mech ; 15(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34841430

ABSTRACT

Desmoplastic small round cell tumor (DSRCT) is characterized by the t(11;22)(p13;q12) translocation, which fuses the transcriptional regulatory domain of EWSR1 with the DNA-binding domain of WT1, resulting in the oncogenic EWSR1-WT1 fusion protein. The paucity of DSRCT disease models has hampered preclinical therapeutic studies on this aggressive cancer. Here, we developed preclinical disease models and mined DSRCT expression profiles to identify genetic vulnerabilities that could be leveraged for new therapies. We describe four DSRCT cell lines and one patient-derived xenograft model. Transcriptomic, proteomic and biochemical profiling showed evidence of activation of the ERBB pathway. Ectopic expression of EWSR1-WT1 resulted in upregulation of ERRB family ligands. Treatment of DSRCT cell lines with ERBB ligands resulted in activation of EGFR, ERBB2, ERK1/2 and AKT, and stimulation of cell growth. Antagonizing EGFR function with shRNAs, small-molecule inhibitors (afatinib, neratinib) or an anti-EGFR antibody (cetuximab) inhibited proliferation of DSRCT cells. Finally, treatment of mice bearing DSRCT xenografts with a combination of cetuximab and afatinib significantly reduced tumor growth. These data provide a rationale for evaluating EGFR antagonists in patients with DSRCT. This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Desmoplastic Small Round Cell Tumor , Animals , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/pathology , Humans , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogenes , Proteomics , WT1 Proteins/genetics , WT1 Proteins/metabolism , WT1 Proteins/therapeutic use
14.
Commun Biol ; 4(1): 1333, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824367

ABSTRACT

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.


Subject(s)
Epigenesis, Genetic , Genome , Molecular Chaperones/genetics , Neoplasms/genetics , Protein Interaction Mapping , Protein Interaction Maps , Animals , Female , Heterografts , Humans , Mice , Signal Transduction
15.
Cancer Cell ; 39(11): 1479-1496.e18, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34653364

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.


Subject(s)
Gene Expression Profiling/methods , Lung Neoplasms/genetics , Phospholipase C gamma/genetics , Small Cell Lung Carcinoma/genetics , Cell Plasticity , Humans , Neoplasm Metastasis , Prognosis , Sequence Analysis, RNA , Single-Cell Analysis , Survival Analysis
16.
Cancer Cell ; 39(7): 973-988.e9, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34115989

ABSTRACT

Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Macrophages/immunology , Membrane Proteins/metabolism , Tumor Microenvironment , Animals , Apoptosis , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Prognosis , Retrospective Studies , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
J Thorac Oncol ; 16(7): 1149-1165, 2021 07.
Article in English | MEDLINE | ID: mdl-33839363

ABSTRACT

INTRODUCTION: NRG1 rearrangements produce chimeric ligands that subvert the ERBB pathway to drive tumorigenesis. A better understanding of the signaling networks that mediate transformation by NRG1 fusions is needed to inform effective therapeutic strategies. Unfortunately, this has been hampered by a paucity of patient-derived disease models that faithfully recapitulate this molecularly defined cancer subset. METHODS: Patient-derived xenograft (PDX) and cell line models were established from NRG1-rearranged lung adenocarcinoma samples. Transcriptomic, proteomic, and biochemical analyses were performed to identify activated pathways. Efficacy studies were conducted to evaluate HER3- and MTOR-directed therapies. RESULTS: We established a pair of PDX and cell line models of invasive mucinous lung adenocarcinoma (LUAD) (LUAD-0061AS3, SLC3A2-NRG1), representing the first reported paired in vitro and in vivo model of NRG1-driven tumors. Growth of LUAD-0061AS3 models was reduced by the anti-HER3 antibody GSK2849330. Transcriptomic profiling revealed activation of the MTOR pathway in lung tumor samples with NRG1 fusions. Phosphorylation of several MTOR effectors (S6 and 4EBP1) was higher in LUAD-0061AS3 cells compared with human bronchial epithelial cells and the breast cancer cell line MDA-MB-175-VII (DOC4-NRG1 fusion). Accordingly, LUAD-0061AS3 cells were more sensitive to MTOR inhibitors than MDA-MB-175-VII cells and targeting the MTOR pathway with rapamycin blocked growth of LUAD-0061AS3 PDX tumors in vivo. In contrast, MDA-MB-175-VII breast cancer cells had higher MAPK pathway activation and were more sensitive to MEK inhibition. CONCLUSIONS: We identify the MTOR pathway as a candidate vulnerability in NRG1 fusion-positive lung adenocarcinoma that may warrant further preclinical evaluation, with the eventual goal of finding additional therapeutic options for patients in whom ERBB-directed therapy fails. Moreover, our results uncover heterogeneity in downstream oncogenic signaling among NRG1-rearranged cancers, possibly tumor type-dependent, the therapeutic significance of which requires additional investigation.


Subject(s)
Lung Neoplasms , Proteomics , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neuregulin-1/genetics , Oncogene Proteins, Fusion/genetics , TOR Serine-Threonine Kinases
18.
Clin Cancer Res ; 27(11): 3154-3166, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33824166

ABSTRACT

PURPOSE: Oncogenic fusions involving the neuregulin 1 (NRG1) gene are found in approximately 0.2% of cancers of diverse histologies. The resulting chimeric NRG1 proteins bind predominantly to HER3, leading to HER3-HER2 dimerization and activation of downstream growth and survival pathways. HER3 is, therefore, a rational target for therapy in NRG1 fusion-driven cancers. EXPERIMENTAL DESIGN: We developed novel patient-derived and isogenic models of NRG1-rearranged cancers and examined the effect of the anti-HER3 antibody, seribantumab, on growth and activation of signaling networks in vitro and in vivo. RESULTS: Seribantumab inhibited NRG1-stimulated growth of MCF-7 cells and growth of patient-derived breast (MDA-MB-175-VII, DOC4-NRG1 fusion) and lung (LUAD-0061AS3, SLC3A2-NRG1 fusion) cancer cells harboring NRG1 fusions or NRG1 amplification (HCC-95). In addition, seribantumab inhibited growth of isogenic HBEC cells expressing a CD74-NRG1 fusion (HBECp53-CD74-NRG1) and induced apoptosis in MDA-MB-175-VII and LUAD-0061AS3 cells. Induction of proapoptotic proteins and reduced expression of the cell-cycle regulator, cyclin D1, were observed in seribantumab-treated cells. Treatment of MDA-MB-175-VII, LUAD-0061AS3, and HBECp53-CD74-NRG1 cells with seribantumab reduced phosphorylation of EGFR, HER2, HER3, HER4, and known downstream signaling molecules, such as AKT and ERK1/2. Significantly, administration of seribantumab to mice bearing LUAD-0061AS3 patient-derived xenograft (PDX) and OV-10-0050 (ovarian cancer with CLU-NRG1 fusion) PDX tumors induced regression of tumors by 50%-100%. Afatinib was much less effective at blocking tumor growth. CONCLUSIONS: Seribantumab treatment blocked activation of the four ERBB family members and of downstream signaling, leading to inhibition of NRG1 fusion-dependent tumorigenesis in vitro and in vivo in breast, lung, and ovarian patient-derived cancer models.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression/drug effects , Gene Fusion/drug effects , Gene Fusion/genetics , Neoplasms/genetics , Neoplasms/pathology , Neuregulin-1/genetics , Neuregulin-1/metabolism , Receptor, ErbB-3/immunology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Mice , Protein Binding , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Xenograft Model Antitumor Assays
19.
Cancer Immunol Immunother ; 70(5): 1189-1202, 2021 May.
Article in English | MEDLINE | ID: mdl-33123756

ABSTRACT

Identification of neoepitopes as tumor-specific targets remains challenging, especially for cancers with low mutational burden, such as ovarian cancer. To identify mutated human leukocyte antigen (HLA) ligands as potential targets for immunotherapy in ovarian cancer, we combined mass spectrometry analysis of the major histocompatibility complex (MHC) class I peptidomes of ovarian cancer cells with parallel sequencing of whole exome and RNA in a patient with high-grade serous ovarian cancer. Four of six predicted mutated epitopes capable of binding to HLA-A*02:01 induced peptide-specific T cell responses in blood from healthy donors. In contrast, all six peptides failed to induce autologous peptide-specific response by T cells in peripheral blood or tumor-infiltrating lymphocytes from ascites of the patient. Surprisingly, T cell responses against a low-affinity p53-mutant Y220C epitope were consistently detected in the patient with either unprimed or in vitro peptide-stimulated T cells even though the patient's primary tumor did not bear this mutation. Our results demonstrated that tumor heterogeneity and distinct immune microenvironments within a patient should be taken into consideration for identification of immunogenic neoantigens. T cell responses to a driver gene-derived p53 Y220C mutation in ovarian cancer warrant further study.


Subject(s)
Antigens, Neoplasm/metabolism , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Immunotherapy, Adoptive/methods , Mutation/genetics , Ovarian Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/metabolism , Antigens, Neoplasm/genetics , Cells, Cultured , Epitopes, T-Lymphocyte/genetics , Female , HLA-A2 Antigen/genetics , Humans , Middle Aged , Neoplasm Staging , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Exome Sequencing
20.
Clin Cancer Res ; 27(4): 1184-1194, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33229458

ABSTRACT

PURPOSE: Desmoplastic small round cell tumor (DSRCT) is a highly lethal intra-abdominal sarcoma of adolescents and young adults. DSRCT harbors a t(11;22)(p13:q12) that generates the EWSR1-WT1 chimeric transcription factor, the key oncogenic driver of DSRCT. EWSR1-WT1 rewires global gene expression networks and activates aberrant expression of targets that together mediate oncogenesis. EWSR1-WT1 also activates a neural gene expression program. EXPERIMENTAL DESIGN: Among these neural markers, we found prominent expression of neurotrophic tyrosine kinase receptor 3 (NTRK3), a druggable receptor tyrosine kinase. We investigated the regulation of NTRK3 by EWSR1-WT1 and its potential as a therapeutic target in vitro and in vivo, the latter using novel patient-derived models of DSRCT. RESULTS: We found that EWSR1-WT1 binds upstream of NTRK3 and activates its transcription. NTRK3 mRNA is highly expressed in DSRCT compared with other major chimeric transcription factor-driven sarcomas and most DSRCTs are strongly immunoreactive for NTRK3 protein. Remarkably, expression of NTRK3 kinase domain mRNA in DSRCT is also higher than in cancers with NTRK3 fusions. Abrogation of NTRK3 expression by RNAi silencing reduces growth of DSRCT cells and pharmacologic targeting of NTRK3 with entrectinib is effective in both in vitro and in vivo models of DSRCT. CONCLUSIONS: Our results indicate that EWSR1-WT1 directly activates NTRK3 expression in DSRCT cells, which are dependent on its expression and activity for growth. Pharmacologic inhibition of NTRK3 by entrectinib significantly reduces growth of DSRCT cells both in vitro and in vivo, providing a rationale for clinical evaluation of NTRK3 as a therapeutic target in DSRCT.


Subject(s)
Benzamides/therapeutic use , Desmoplastic Small Round Cell Tumor/drug therapy , Indazoles/therapeutic use , Oncogene Proteins, Fusion/metabolism , RNA-Binding Protein EWS/antagonists & inhibitors , Adolescent , Adult , Animals , Benzamides/pharmacology , Cell Line, Tumor , Child , Desmoplastic Small Round Cell Tumor/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Indazoles/pharmacology , Male , Mice , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Receptor, trkC/genetics , Receptor, trkC/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...