Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 226(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37815453

ABSTRACT

Migration is an energetically taxing phenomenon as animals move across vast, heterogeneous landscapes where the cost of transport is impacted by permissible ambient conditions. In this study, we assessed the energetic demands of long-distance migration in a multigenerational ectothermic migrant, the monarch butterfly (Danaus plexippus). We tested the hypotheses that temperature-dependent physiological processes reduce energy reserves faster during migration than previously estimated, and that increasing climatic temperatures resulting from the climate crisis will intensify baseline daily energy expenditure. First, we reared monarchs under laboratory conditions to assess energy and mass conversion from fifth instar to adult stages, as a baseline for migratory adult mass and ontogenetic shifts in metabolic rate from larvae to adult. Then, using historical tag-recapture data, we estimated the movement propensity and migratory pace of autumn migrants using computer simulations and subsequently calculated energy expenditure. Finally, we estimated the energy use of monarchs based on these tag-recapture data and used this information to estimate daily energy expenditure over a 57 year period. We found support for our two hypotheses, noting that incorporating standard metabolic rate into estimates of migratory energy expenditure shows higher energy demand and that daily energy expenditure has been gradually increasing over time since 1961. Our study shows the deleterious energetic consequences under current climate change trajectories and highlights the importance of incorporating energetic estimates for understanding migration by small, ectothermic migrants.


Subject(s)
Butterflies , Climate Change , Animals , Animal Migration/physiology , Butterflies/physiology , Larva , Energy Metabolism
2.
Cell Stress Chaperones ; 28(5): 541-549, 2023 09.
Article in English | MEDLINE | ID: mdl-37392307

ABSTRACT

Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.


Subject(s)
Extreme Heat , Mites , Female , Animals , Male , Antarctic Regions , Fertility , Heat-Shock Response
3.
Ecol Evol ; 12(11): e9498, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36407908

ABSTRACT

How first-time animal migrants find specific destinations remains an intriguing ecological question. Migratory marine species use geomagnetic map cues acquired as juveniles to aide long-distance migration, but less is known for long-distance migrants in other taxa. We test the hypothesis that naïve Eastern North American fall migratory monarch butterflies (Danaus plexippus), a species that possesses a magnetic sense, locate their overwintering sites in Central Mexico using inherited geomagnetic map cues. We examined whether overwintering locations and the abundance of monarchs changed with the natural shift of Earth's magnetic field from 2004 to 2018. We found that migratory monarchs continued to overwinter at established sites in similar abundance despite significant shifts in the geomagnetic field, which is inconsistent with monarchs using fine-scale geomagnetic map cues to find overwintering sites. It is more likely that monarchs use geomagnetic cues to assess migratory direction rather than location and use other cues to locate overwintering sites.

4.
Sci Total Environ ; 769: 145161, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33486167

ABSTRACT

Extreme climate events are predicted to increase in the future, which will have significant effects on insect biodiversity. Research into this area has been rapidly expanding, but knowledge gaps still exist. We conducted a review of the literature to provide a synthesis of extreme climate events on insects and identify future areas of research. In our review, we asked the following questions: 1) What are the direct and indirect mechanisms that extreme climate events affect individual insects? 2) What are the effects of extreme climate events on insect populations and demography? 3) What are the implications of the extreme climate events effects on insect communities? Drought was among the most frequently described type of extreme climate event affecting insects, as well as the effects of temperature extremes and extreme temperature variation. Our review explores the factors that determine the sensitivity or resilience to climate extremes for individuals, populations, and communities. We also identify areas of future research to better understand the role of extreme climate events on insects including effects on non-trophic interactions, alteration of population dynamics, and mediation of the functional the trait set of communities. Many insect species are under threat from global change and extreme climate events are a contributing factor. Biologists and policy makers should consider the role of extreme events in their work to mitigate the loss of biodiversity and delivery of ecosystem services by insects.


Subject(s)
Climate Change , Ecosystem , Animals , Biodiversity , Climate , Humans , Insecta
5.
Sci Rep ; 10(1): 19791, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188214

ABSTRACT

The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.


Subject(s)
Proteomics/methods , Animals , Female , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/metabolism , Male , RNA-Seq/methods
6.
Glob Chang Biol ; 26(5): 2867-2877, 2020 05.
Article in English | MEDLINE | ID: mdl-32196868

ABSTRACT

Climate change is expected to have significant and complex impacts on ecological communities. In addition to direct effects of climate on species, there can also be indirect effects through an intermediary species, such as in host-plant interactions. Indirect effects are expected to be more pronounced in alpine environments because these ecosystems are sensitive to temperature changes and there are limited areas for migration of both species (i.e. closed systems), and because of simpler trophic interactions. We tested the hypothesis that climate change will reduce the range of an alpine butterfly (Parnassius smintheus) because of indirect effects through its host plant (Sedum sp.). To test for direct and indirect effects, we used the simulations of climate change to assess the distribution of P. smintheus with and without Sedum sp. We also compared the projected ranges of P. smintheus to four other butterfly species that are found in the alpine, but that are generalists feeding on many plant genera. We found that P. smintheus gained distributional area in climate-only models, but these gains were significantly reduced with the inclusion of Sedum sp. and in dry-climate scenarios which resulted in a reduction in net area. When compared to the more generalist butterfly species, P. smintheus exhibited the largest loss in suitable habitat. Our findings support the importance of including indirect effects in modelling species distributions in response to climate change. We highlight the potentially large and still neglected impacts climate change can have on the trophic structure of communities, which can lead to significant losses of biodiversity. In the future, communities will continue to favour species that are generalists as climate change induces asynchronies in the migration of species.


Subject(s)
Butterflies , Animals , Biodiversity , Climate Change , Ecosystem , Plants
7.
J Evol Biol ; 33(5): 668-681, 2020 05.
Article in English | MEDLINE | ID: mdl-32052525

ABSTRACT

Many populations, especially in insects, fluctuate in size, and periods of particularly low population size can have strong effects on genetic variation. Effects of demographic bottlenecks on genetic diversity of single populations are widely documented. Effects of bottlenecks on genetic structure among multiple interconnected populations are less studied, as are genetic changes across multiple cycles of demographic collapse and recovery. We take advantage of a long-term data set comprising demographic, genetic and movement data from a network of populations of the butterfly, Parnassius smintheus, to examine the effects of fluctuating population size on spatial genetic structure. We build on a previous study that documented increased genetic differentiation and loss of spatial genetic patterns (isolation by distance and by intervening forest cover) after a network-wide bottleneck event. Here, we show that genetic differentiation was reduced again and spatial patterns returned to the system extremely rapidly, within three years (i.e. generations). We also show that a second bottleneck had similar effects to the first, increasing differentiation and erasing spatial patterns. Thus, bottlenecks consistently drive random divergence of allele frequencies among populations in this system, but these effects are rapidly countered by gene flow during demographic recovery. Our results reveal a system in which the relative influence of genetic drift and gene flow continually shift as populations fluctuate in size, leading to cyclic changes in genetic structure. Our results also suggest caution in the interpretation of patterns of spatial genetic structure, and its association with landscape variables, when measured at only a single point in time.


Subject(s)
Butterflies/genetics , Genetic Variation , Alberta , Animals , Gene Flow , Genetic Drift , Phylogeography , Population Dynamics
8.
Insect Sci ; 26(5): 932-944, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29575558

ABSTRACT

Dispersal is a central aspect of the ecology, evolution, and conservation of species. Predicting how species will respond to changing environmental conditions requires understanding factors that produce variation in dispersal. We explore one source of variation, differences between sexes within a spatial population network. Here, we compare the dispersal patterns of male and female Parnassius smintheus among 18 subpopulations over 8 years using the Virtual Migration Model. Estimated dispersal parameters differed between males and females, particularly with respect to movement through meadow and forest matrix habitat. The estimated dispersal distances of males through forest were much less than for females. Observations of female movement showed that, unlike males, females do not avoid forest nor does forest exert an edge effect. We explored whether further forest encroachment in this system would have different effects for males and females by fitting mean parameter estimates to the landscape configuration seen in 1993 and 2012. Despite differences in their dispersal due presumably to both habitat and physiological differences, males and females are predicted to respond in similar ways to reduced meadow area and increased forest isolation.


Subject(s)
Animal Distribution , Butterflies/physiology , Forests , Alberta , Animal Migration , Animals , Ecosystem , Female , Male , Sex Factors
9.
Ecosphere ; 9(11)2018 11.
Article in English | MEDLINE | ID: mdl-31297300

ABSTRACT

Many conceptual syntheses in ecology and evolution are undergirded by either a patch- or continuum-based model. Examples include gradualism and punctuated equilibrium in evolution, and edge effects and the theory of island biogeography in ecology. In this study, we sought to determine how patch- or continuum-based analyses could explain variation in concentrations of stream macronutrients and system metabolism, represented by measures of productivity and respiration rates, at the watershed scale across the Kanawha River Basin, USA. Using Strahler stream order (SSO; continuum) and functional process zone (FPZ; patch) as factors, we produced statistical models for each variable and compared model performance using likelihood ratio tests. Only one nutrient (i.e., PO43- ) responded better to patch-based analysis. Both models were significantly better than a null model for ecosystem respiration; however, neither outperformed the other. Importantly, in most cases, a combination model, including both SSO and FPZ, best described observed variation in the system. Our findings suggest that several patch- and continuum-based processes may simultaneously influence the concentration of macronutrients and system metabolism. Nutrient spiral- ing along a continuum and the patch mosaic of land cover may both alter macronutrients, for example. Similarly, increases in temperature and discharge associated with increasing SSO, as well as the differences in light availability and channel morphology associated with different FPZs, may influence system metabolism. For these reasons, we recommend a combination of patch- and continuum-based analyses when modeling, analyzing, and interpreting patterns in stream ecosystem parameters.

10.
Proc Natl Acad Sci U S A ; 113(39): 10914-9, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621433

ABSTRACT

Demographic bottlenecks that occur when populations fluctuate in size erode genetic diversity, but that diversity can be recovered through immigration. Connectivity among populations and habitat patches in the landscape enhances immigration and should in turn facilitate recovery of genetic diversity after a sudden reduction in population size. For the conservation of genetic diversity, it may therefore be particularly important to maintain connectivity in the face of factors that increase demographic instability, such as climate change. However, a direct link between connectivity and recovery of genetic diversity after a demographic bottleneck has not been clearly demonstrated in an empirical system. Here, we show that connectivity of habitat patches in the landscape contributes to the maintenance of genetic diversity after a demographic bottleneck. We were able to monitor genetic diversity in a network of populations of the alpine butterfly, Parnassius smintheus, before, during, and after a severe reduction in population size that lasted two generations. We found that allelic diversity in the network declined after the demographic bottleneck but that less allelic diversity was lost from populations occupying habitat patches with higher connectivity. Furthermore, the effect of connectivity on allelic diversity was important during the demographic recovery phase. Our results demonstrate directly the ability of connectivity to mediate the rescue of genetic diversity in a natural system.


Subject(s)
Butterflies/genetics , Genetic Variation , Genetics, Population , Alberta , Alleles , Animals , Demography , Gene Dosage , Geography , Linear Models , Population Density , Population Dynamics , Sample Size
11.
Gen Comp Endocrinol ; 222: 69-80, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26188717

ABSTRACT

Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters (THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with respect to developmental stage, tissue, and TH receptor ß (TRß) expression. For some tissues, the timing of tissue transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH.


Subject(s)
Brain/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Ranidae/metabolism , Thyroid Hormone Receptors beta/metabolism , Thyroid Hormones/metabolism , Animals , Metamorphosis, Biological/physiology , Thyroid Hormone-Binding Proteins
12.
Proc Biol Sci ; 281(1796): 20141798, 2014 12 07.
Article in English | MEDLINE | ID: mdl-25320176

ABSTRACT

Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60-100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift.


Subject(s)
Butterflies/genetics , Environment , Animals , Butterflies/physiology , Climate Change , Gene Flow , Genetic Variation , Genetics, Population , Microsatellite Repeats , Population Density , Population Dynamics
13.
Lipids ; 49(6): 543-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24748493

ABSTRACT

The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.


Subject(s)
Fatty Acids/metabolism , Lipid Metabolism , Streptococcus mutans/metabolism , Culture Techniques , Dental Caries/microbiology , Diglycerides/metabolism , Phosphatidylglycerols/metabolism , Streptococcus mutans/growth & development
14.
Ecology ; 94(1): 190-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23600253

ABSTRACT

We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.


Subject(s)
Butterflies/physiology , Climate Change , Seasons , Adaptation, Physiological , Altitude , Animals , Ecosystem , Population Growth , Time Factors
15.
J Chem Ecol ; 38(5): 525-37, 2012 May.
Article in English | MEDLINE | ID: mdl-22527055

ABSTRACT

Sequestration of plant secondary metabolites is a widespread phenomenon among aposematic insects. Sarmentosin is an unsaturated γ-hydroxynitrile glucoside known from plants and some Lepidoptera. It is structurally and biosynthetically closely related to cyanogenic glucosides, which are commonly sequestered from food plants and/or de novo synthesized by lepidopteran species. Sarmentosin was found previously in Parnassius (Papilionidae) butterflies, but it was not known how the occurrence was related to food plants or whether Parnassius species could biosynthesize the compound. Here, we report on the occurrence of sarmentosin and related compounds in four different Parnassius species belonging to two different clades, as well as their known and suspected food plants. There were dramatic differences between the two clades, with P. apollo and P. smintheus from the Apollo group containing high amounts of sarmentosin, and P. clodius and P. mnemosyne from the Mnemosyne group containing low or no detectable amounts. This was reflected in the larval food plants; P. apollo and P. smintheus larvae feed on Sedum species (Crassulaceae), which all contained considerable amounts of sarmentosin, while the known food plants of the two other species, Dicentra and Corydalis (Fumariaceae), had no detectable levels of sarmentosin. All insects and plants containing sarmentosin also contained other biosynthetically related hydroxynitrile glucosides in patterns previously reported for plants, but not for insects. Not all findings could be explained by sequestration alone and we therefore hypothesize that Parnassius species are able to de novo synthesize sarmentosin.


Subject(s)
Butterflies/physiology , Crassulaceae/metabolism , Fumariaceae/metabolism , Glucose/analogs & derivatives , Glucosides/metabolism , Herbivory , Nitriles/metabolism , Animals , Glucose/isolation & purification , Glucose/metabolism , Glucosides/isolation & purification , Nitriles/isolation & purification
16.
Brain Res ; 1358: 81-8, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20709034

ABSTRACT

The spontaneous activity of mitral cells was recorded in vivo from the main olfactory bulb of freely breathing anesthetized rats. Single units recorded extracellularly from the mitral cell body layer were further identified as mitral cells by antidromic activation of the lateral olfactory tract and the posterior piriform cortex. Hierarchical cluster analysis of their spontaneous activity showed that at least two classes of mitral cells could be distinguished. A post-hoc multivariate analysis of variance indicated significant differences between the two groups based on mean rate, latency, and the coefficient of variation in interspike interval. Univariate tests showed that the groups differed in mean rate, but not in latency, or in the coefficient of variation in interspike interval. Autocorrelation analysis showed that the high frequency group tended to fire in bursts. Functional implications of these putative subclasses of mitral cells are discussed.


Subject(s)
Neurons/classification , Neurons/physiology , Olfactory Bulb/cytology , Action Potentials/physiology , Analysis of Variance , Animals , Electric Stimulation/methods , Male , Olfactory Pathways/physiology , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Statistics as Topic/methods
17.
Proc Biol Sci ; 277(1682): 729-37, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-19889700

ABSTRACT

Spatial population theory predicts that synchrony in the dynamics of local populations should decrease as dispersal among populations decreases. Thus, it would be expected that the extinction of local populations and the attendant loss of immigrants to surrounding populations would reduce synchrony. We tested this hypothesis through a large-scale experiment, simulation of the experimental system and general models. Experimental removal of two adjacent subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus within a network consisting of 15 other local populations resulted in a decrease in immigration to surrounding populations that was proportional to their connectivity to the removal populations. These populations also showed a significant increase in synchrony during population removal. The spatial extent of the synchrony showed good agreement with the predicted loss of immigrants owing to the removals. Simulation of the Parnassius system showed a similar short-term result and also indicated that permanent loss of populations produces structural changes increasing synchrony. General models indicate that an increase in synchrony following extinction occurs when populations undergoing extinction have different carrying capacities than surrounding populations. The result is not owing to biased migration per se, but rather is because of the number of immigrants relative to the carrying capacity. Synchrony following extinction should be most common for patchy populations, but can occur in any situation where carrying capacities differ. Overall, our results indicate that local extinction can create a positive feedback for extinction risk, increasing the probability of extinction for population networks by synchronizing their dynamics.


Subject(s)
Extinction, Biological , Population Dynamics , Animals , Butterflies , Models, Biological , Species Specificity
18.
J Anim Ecol ; 77(4): 746-56, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18479341

ABSTRACT

1. Reproductive asynchrony, where individuals in a population are short-lived relative to the population-level reproductive period, has been identified recently as a theoretical mechanism of the Allee effect that could operate in diverse plant and insect species. The degree to which this effect impinges on the growth potential of natural populations is not yet well understood. 2. Building on previous models of reproductive timing, we develop a general framework that allows a detailed, quantitative examination of the reproductive potential lost to asynchrony in small natural populations. 3. Our framework includes a range of biologically plausible submodels that allow details of mating biology of different species to be incorporated into the basic reproductive timing model. 4. We tailor the parameter estimation methods of the full model (basic model plus mating biology submodels) to take full advantage of data from detailed field studies of two species of Parnassius butterflies whose mating status may be assessed easily in the field. 5. We demonstrate that for both species, a substantial portion of the female population (6.5-18.6%) is expected to die unmated. These analyses provide the first direct, quantitative evidence of female reproductive failure due to asynchrony in small natural populations, and suggest that reproductive asynchrony exerts a strong and largely unappreciated influence on the population dynamics of these butterflies and other species with similarly asynchronous reproductive phenology.


Subject(s)
Butterflies/physiology , Extinction, Biological , Models, Biological , Reproduction/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Male , Population Density , Population Dynamics , Population Growth , Seasons , Species Specificity , Time Factors
19.
Proc Natl Acad Sci U S A ; 104(34): 13702-4, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17699630

ABSTRACT

Over the past 50 years, the rising tree line along Jumpingpound Ridge in the Rocky Mountains of Alberta, Canada, has reduced the area of alpine meadows and isolated populations that reside within them. By analyzing an 11-year data set of butterfly population sizes for 17 subpopulations along the ridge, we show that forest habitat separating alpine meadows decouples the dynamics of populations of the alpine butterfly Parnassius smintheus. Although the distance between populations is often negatively correlated with synchrony of dynamics, here we show that distance through forest, not Euclidean distance, determines the degree of synchrony. This effect is consistent with previous results demonstrating that encroaching forest reduces dispersal among populations and reduces gene flow. Decoupling dynamics produces more smaller independent populations, each with greater risk of local extinction, but decoupling may produce a lower risk of regional extinction in this capricious environment.


Subject(s)
Butterflies/physiology , Ecosystem , Trees/growth & development , Animals , Ecology , Population Dynamics , Time Factors
20.
Oecologia ; 150(1): 8-16, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16858584

ABSTRACT

I examined the dispersal of the red milkweed beetle, Tetraopes tetraophthalmus, among patches of its host plant, common milkweed, Asclepias syriaca. Over a 5-year period, the number of patches in a landscape and their mean size increased, while the distance between patches decreased. Over the same period the proportion of beetles dispersing between patches increased from 0.48 to 0.62. Estimates from the virtual migration model showed that mean migration distance decreased from 158 to 72 m for male beetles and from 129 to 72 m for female beetles. Estimated mortality per migration event decreased as the landscape changed, but was low in all years. The estimated mean migration mortality per patch decreased from 1.45 x 10(-2 )to 3.70 x 10(-7 )for male beetles. Female migration mortality decreased from 5.48 x 10(-3 )to 3.88 x 10(-6). Increasing the size and number of patches and decreasing interpatch distance decreases migration mortality and may play an important role in the conservation of species, particularly where mortality during dispersal is high.


Subject(s)
Animal Migration , Coleoptera/physiology , Demography , Models, Theoretical , Animals , Asclepias , Female , Male , Mortality , Sex Factors , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...