Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 10(2): e00938, 2022 04.
Article in English | MEDLINE | ID: mdl-35194979

ABSTRACT

An excess phosphate burden in renal disease has pathological consequences for bone, kidney, and heart. Therapies to decrease intestinal phosphate absorption have been used to address the problem, but with limited success. Here, we describe the in vivo effects of a novel potent inhibitor of the intestinal sodium-dependent phosphate cotransporter NPT2b, LY3358966. Following treatment with LY3358966, phosphate uptake into plasma 15 min following an oral dose of radiolabeled phosphate was decreased 74% and 22% in mice and rats, respectively, indicating NPT2b plays a much more dominant role in mice than rats. Following the treatment with LY3358966 and radiolabeled phosphate, mouse feces were collected for 48 h to determine the ability of LY3358966 to inhibit phosphate absorption. Compared to vehicle-treated animals, there was a significant increase in radiolabeled phosphate recovered in feces (8.6% of the dose, p < .0001). Similar studies performed in rats also increased phosphate recovered in feces (5.3% of the dose, p < .05). When used in combination with the phosphate binder sevelamer in rats, there was a further small, but not significant, increase in fecal phosphate. In conclusion, LY3358966 revealed a more prominent role for NPT2b on acute intestinal phosphate uptake into plasma in mice than rats. However, the modest effects on total intestinal phosphate absorption observed in mice and rats with LY3359866 when used alone or in combination with sevelamer highlights the challenge to identify new more effective therapeutic targets and/or drug combinations to treat the phosphate burden in patients with renal disease.


Subject(s)
Intestinal Absorption , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/antagonists & inhibitors , Animals , CHO Cells , Chelating Agents/administration & dosage , Chelating Agents/pharmacology , Cricetulus , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Sevelamer/administration & dosage , Sevelamer/pharmacology , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Species Specificity
2.
ACS Chem Biol ; 16(3): 457-462, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33656326

ABSTRACT

Lipoprotein lipase (LPL) is the key enzyme that hydrolyzes triglycerides from triglyceride-rich lipoproteins. Angiopoietin-like proteins (ANGPTL) 3, 4, and 8 are well-characterized protein inhibitors of LPL. ANGPTL8 forms a complex with ANGPTL3, and the complex is a potent endogenous inhibitor of LPL. However, the nature of the structural interaction between ANGPTL3/8 and LPL is unknown. To probe the conformational changes in LPL induced by ANGPTL3/8, we found that HDX-MS detected significantly altered deuteration in the lid region, ApoC2 binding site, and furin cleavage region of LPL in the presence of ANGPTL3/8. Supporting this HDX structural evidence, we found that ANGPTL3/8 inhibits LPL enzymatic activities and increases LPL cleavage. ANGPTL3/8-induced effects on LPL activity and LPL cleavage are much stronger than those of ANGPTL3 or ANGPTL8 alone. ANGPTL3/8-mediated LPL cleavage is blocked by both an ANGPTL3 antibody and a furin inhibitor. Knock-down of furin expression by siRNA significantly reduced ANGPT3/8-induced cleavage of LPL. Our data suggest ANGPTL3/8 promotes furin-mediated LPL cleavage.


Subject(s)
Angiopoietin-like Proteins/chemistry , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/chemistry , Proteolysis/drug effects , Binding Sites , Deuterium/chemistry , Furin/chemistry , Furin/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Hydrolysis , Isotope Labeling , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , RNA, Small Interfering/metabolism
3.
Appl Magn Reson ; 46(8): 853-873, 2015.
Article in English | MEDLINE | ID: mdl-26224994

ABSTRACT

As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bind to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order-those with g-shift Rrelative ≥15-yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H2O2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.

4.
ACS Med Chem Lett ; 5(10): 1138-42, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25313327

ABSTRACT

Cathepsin S (Cat S) plays an important role in many pathological conditions, including abdominal aortic aneurysm (AAA). Inhibition of Cat S may provide a new treatment for AAA. To date, several classes of Cat S inhibitors have been reported, many of which form covalent interactions with the active site Cys25. Herein, we report the discovery of a novel series of noncovalent inhibitors of Cat S through a medium-throughput focused cassette screen and the optimization of the resulting hits. Structure-based optimization efforts led to Cat S inhibitors such as 5 and 9 with greatly improved potency and drug disposition properties. This series of compounds binds to the S2 and S3 subsites without interacting with the active site Cys25. On the basis of in vitro potency, selectivity, and efficacy in a CaCl2-induced AAA in vivo model, 5 (LY3000328) was selected for clinical development.

5.
J Biol Chem ; 280(19): 19298-305, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15737997

ABSTRACT

Mixed lineage kinase 7 (MLK7) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the pro-apoptotic signaling pathways p38 and JNK. A library of potential kinase inhibitors was screened, and a series of dihydropyrrolopyrazole quinolines was identified as highly potent inhibitors of MLK7 in vitro catalytic activity. Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays. In stimulated cells, DHP-2 at 200 nM or MLK7 small interfering RNA completely blocked anisomycin and UV induced but had no effect on interleukin-1beta or tumor necrosis factor-alpha-induced p38 and JNK activation. Additionally, the compound blocked anisomycin and UV-induced apoptosis in COS-7 cells. Heart tissue homogenates from MLK7 transgenic mice treated with DHP-2 at 30 mg/kg had reduced JNK and p38 activation with no apparent effect on ERK activation, demonstrating that this compound can be used to block MLK7-driven MAPK pathway activation in vivo. Taken together, these data demonstrate that MLK7 is the MAPKKK required for modulation of the stress-activated MAPKs downstream of anisomycin and UV stimulation and that DHP-2 can be used to block MLK7 pathway activation in cells as well as in vivo.


Subject(s)
Anisomycin/antagonists & inhibitors , Anisomycin/chemistry , Cytokines/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Muscle Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Pyrazoles/pharmacology , Quinolines/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Anisomycin/pharmacology , Apoptosis , Blotting, Western , COS Cells , Catalysis , DNA Fragmentation , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Enzyme Inhibitors/pharmacology , Glutathione Transferase/metabolism , Humans , Inhibitory Concentration 50 , Interleukin-1/metabolism , MAP Kinase Kinase 4 , MAP Kinase Kinase Kinases/metabolism , Mice , Models, Chemical , Muscle Proteins/metabolism , Myocardium/metabolism , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , Plasmids/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Quinolines/chemistry , RNA, Small Interfering/metabolism , Signal Transduction , Time Factors , Transfection , Transgenes , Tumor Necrosis Factor-alpha/metabolism , Ultraviolet Rays
6.
Crit Care Med ; 32(5 Suppl): S302-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15118535

ABSTRACT

OBJECTIVE: To explore whether the improvement in organ function and the vasoactive effect observed in the clinical studies of drotrecogin alfa (activated) (recombinant human activated protein C, rhAPC) in sepsis are a result of rhAPC's effect on endothelial cell (EC) permeability and modulation of the intracellular cytoskeleton via the Rho kinase signaling pathway. DESIGN: Findings regarding dose and duration of exposure to the drug with sequential addition of rhAPC and mediators (thrombin, histamine, interleukin-1 beta). SETTING: Research laboratory in a pharmaceutical company. SUBJECTS: Cultured primary human EC from different tissues and vascular beds. INTERVENTIONS: A monolayer of EC was incubated with either rhAPC, thrombin, histamine, or interleukin-1 beta alone or with rhAPC in combination with thrombin or interleukin-beta. The effect of rhAPC and mediators on EC permeability was monitored with measurement of electrical resistance. The effect on Rho kinase pathway signaling was monitored by the levels of phosphorylated myosin light chain and blockage with the Rho kinase specific inhibitor, Y27632. MEASUREMENTS AND MAIN RESULTS: Thrombin alone induced an early, concentration-dependent, and transient leakiness of EC. Interleukin-1 beta (0.5 ng/mL) induced an early, irreversible leakiness of EC. rhAPC (0.05-0.2 microg/mL, approximate median therapeutic blood levels) alone had no effect on EC permeability. rhAPC at > or=1 microg/mL induced an early EC leakage. rhAPC (0.19 microg/mL) attenuated the leakage induced by 0.5 ng/mL interleukin-1beta on microvascular EC derived from lung and skin and partially attenuated the leakage induced by 0.25 nM thrombin on human coronary arterial ECs. Levels of phosphorylated myosin light chain increased rapidly in human coronary arterial ECs when stimulated with thrombin or rhAPC (about 100-fold less potent) in a concentration-dependent manner via the Rho kinase signaling pathway. Short (5 mins) preconditioning of human coronary arterial ECs with 0.19 microg/mL rhAPC partially blocked the increase in phosphorylated myosin light chain levels induced by thrombin (0.06-0.2 nM). CONCLUSIONS: At concentrations exceeding physiologic and therapeutic levels, rhAPC increases EC permeability, an effect not seen at lower concentrations. The data suggest that interpretation of published in vitro and in vivo data of rhAPC and EC permeability should take into consideration the concentrations of rhAPC used or achieved. Other preliminary novel observations suggest that studying the effects of rhAPC on EC permeability and intracellular cytoskeletal organization may provide understanding of the effect of rhAPC on EC function.


Subject(s)
Anti-Infective Agents/pharmacology , Cell Membrane Permeability/drug effects , Endothelial Cells/drug effects , Endothelial Cells/physiology , Protein C/pharmacology , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/physiology , Recombinant Proteins/pharmacology , Cells, Cultured , Humans , Intracellular Signaling Peptides and Proteins , Signal Transduction/drug effects , rho-Associated Kinases
7.
Am J Physiol Heart Circ Physiol ; 286(2): H796-805, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14563664

ABSTRACT

The phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 decreased steady-state contraction in neonatal rat ventricular myocytes (NRVM). To determine whether the effect on steady-state contraction could be due to decreased intracellular Ca(2+) content, Ca(2+) content was assessed with fluorescent plate reader analysis by using the caffeine-releasable Ca(2+) stores as an index of sarcoplasmic reticulum (SR) Ca(2+) content. Caffeine-releasable Ca(2+) content was diminished in a dose-dependent manner with LY-294002, suggesting that the decrease in steady-state contraction was due to diminished intracellular Ca(2+) content. Activation of the L-type Ca(2+) channel by BAY K 8644 was attenuated by LY-294002, suggesting the effect of LY-294002 is to reduce Ca(2+) influx at this channel. To investigate whether additional proteins involved in excitation-contraction (EC) coupling are likewise regulated by PI3K activity, the effects of compounds acting at sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), the ryanodine receptor, and the Na/Ca exchanger (NCX) were compared with LY-294002. Inhibition of SERCA2a by thapsigargin increased basal Ca(2+) levels in contrast to LY-294002, indicating that SERCA2a activity is sustained in the presence of LY-294002. Ryanodine decreased SR Ca(2+) content. The additive effect with coadministration of LY-294002 could be attributed to a decrease in Ca(2+) influx at the L-type Ca(2+) channel. The NCX inhibitor Ni(2+) was used to investigate whether the decrease in intracellular Ca(2+) content with LY-294002 could be due to inhibition of the NCX reverse-mode activity. The minimal effect of LY-294002 with Ni(2+) suggests that the primary effect of LY-294002 on EC coupling occurs through inhibition of PI3K-mediated L-type Ca(2+) channel activity.


Subject(s)
Calcium/metabolism , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Phosphatidylinositol 3-Kinases/physiology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Animals, Newborn , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/physiology , Calcium-Transporting ATPases/metabolism , Cells, Cultured , Chromones/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Enzyme Inhibitors/pharmacology , Heart Ventricles/drug effects , Kinetics , Morpholines/pharmacology , Myocytes, Cardiac/enzymology , Phosphoinositide-3 Kinase Inhibitors , Piperazines/pharmacology , Platelet-Derived Growth Factor/pharmacology , Rats , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sodium-Calcium Exchanger/metabolism , Ventricular Function
SELECTION OF CITATIONS
SEARCH DETAIL
...