Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965385

ABSTRACT

Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.

2.
Nat Commun ; 15(1): 4158, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755143

ABSTRACT

Photosynthetic organisms, fungi, and animals comprise distinct pathways for vitamin C biosynthesis. Besides this diversity, the final biosynthetic step consistently involves an oxidation reaction carried out by the aldonolactone oxidoreductases. Here, we study the origin and evolution of the diversified activities and substrate preferences featured by these flavoenzymes using molecular phylogeny, kinetics, mutagenesis, and crystallographic experiments. We find clear evidence that they share a common ancestor. A flavin-interacting amino acid modulates the reactivity with the electron acceptors, including oxygen, and determines whether an enzyme functions as an oxidase or a dehydrogenase. We show that a few side chains in the catalytic cavity impart the reaction stereoselectivity. Ancestral sequence reconstruction outlines how these critical positions were affixed to specific amino acids along the evolution of the major eukaryotic clades. During Eukarya evolution, the aldonolactone oxidoreductases adapted to the varying metabolic demands while retaining their overarching vitamin C-generating function.


Subject(s)
Ascorbic Acid , Evolution, Molecular , Phylogeny , Ascorbic Acid/biosynthesis , Ascorbic Acid/metabolism , Kinetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry , Crystallography, X-Ray , Oxidation-Reduction , Animals , Catalytic Domain , Substrate Specificity , Models, Molecular
3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798619

ABSTRACT

UM171 is a potent small molecule agonist of ex vivo human hematopoietic stem cell (HSC) self-renewal, a process that is tightly controlled by epigenetic regulation. By co-opting KBTBD4, a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, UM171 promotes the degradation of members of the CoREST transcriptional corepressor complex, thereby limiting HSC attrition. However, the direct target and mechanism of action of UM171 remain unclear. Here, we reveal that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1 to promote the degradation of select HDAC1/2 corepressor complexes. Through proteomics and chemical inhibitor studies, we discover that the principal target of UM171 is HDAC1/2. Cryo-electron microscopy (cryo-EM) analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex unveils an unexpected asymmetric assembly, in which a single UM171 molecule enables a pair of KBTBD4 KELCH-repeat propeller domains to recruit HDAC1 by clamping on its catalytic domain. One of the KBTBD4 propellers partially masks the rim of the HDAC1 active site pocket, which is exploited by UM171 to extend the E3-neo-substrate interface. The other propeller cooperatively strengthens HDAC1 binding via a separate and distinct interface. The overall neomorphic interaction is further buttressed by an endogenous cofactor of HDAC1-CoREST, inositol hexakisphosphate, which makes direct contacts with KBTBD4 and acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces defined by cryo-EM is demonstrated by in situ base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, our results reveal how the cooperativity offered by a large dimeric CRL E3 family can be leveraged by a small molecule degrader and establish for the first time a dual molecular glue paradigm.

4.
Prostate ; 84(10): 909-921, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619005

ABSTRACT

INTRODUCTION: Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS: Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS: Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS: Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.


Subject(s)
Histone Demethylases , Prostatic Neoplasms, Castration-Resistant , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Male , Humans , Animals , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Benzamides , Piperazines , Triazoles
5.
Nat Catal ; 7(2): 148-160, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38425362

ABSTRACT

Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.

6.
Appl Microbiol Biotechnol ; 108(1): 61, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183484

ABSTRACT

Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.


Subject(s)
Glycerol , Sugar Alcohols , Biocatalysis , Bioprospecting , Catalysis
7.
ACS Catal ; 13(22): 14639-14649, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026814

ABSTRACT

The drive for a circular bioeconomy has resulted in a great demand for renewable, biobased chemicals. We present a one-pot biocatalytic cascade reaction for the production of racemic syringaresinol, a lignan with applications as a nutraceutical and in polymer chemistry. The process consumes dihydrosinapyl alcohol, which can be produced renewably from the lignocellulosic material. To achieve this, a variant of eugenol oxidase was engineered for the oxidation of dihydrosinapyl alcohol into sinapyl alcohol with good conversion and chemoselectivity. The crystal structure of the engineered oxidase revealed the molecular basis of the influence of the mutations on the chemoselectivity of the oxidation of dihydrosinapyl alcohol. By using horseradish peroxidase, the subsequent oxidative dimerization of sinapyl alcohol into syringaresinol was achieved. Conditions for the one-pot, two-enzyme synthesis were optimized, and a high yield of syringaresinol was achieved by cascading the oxidase and peroxidase steps in a stepwise fashion. This study demonstrates the efficient production of syringaresinol from a compound that can be renewed by reductive catalytic fractionation of lignocellulose, providing a biocatalytic route for generating a valuable compound from lignin.

8.
Nat Chem Biol ; 19(12): 1540-1550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884805

ABSTRACT

NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.


Subject(s)
NADPH Oxidases , Neoplasms , Humans , NADPH Oxidases/chemistry , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Oxidation-Reduction , Cell Line
9.
Chembiochem ; 24(24): e202300588, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37800383

ABSTRACT

The chemical 5-hydroxymethylfurfural (HMF) can be derived from lignocellulose and is an interesting bio-based platform chemical as it has the potential to be transformed into numerous valuable building blocks such as the polymer-precursor 2,5-diformylfuran (DFF). To date, only a few oxidases acting on HMF are known and by sampling atypical species, we discovered a novel flavin-dependent oxidoreductase from the honeybee Apis mellifera (beeHMFO). The enzyme can perform the chemoselective oxidation of HMF to DFF but can also readily accept other aromatic alcohols as substrates. The function of the enzyme may well be the antimicrobial generation of hydrogen peroxide using HMF, which is very abundant in honey. The discovery of this insect-derived flavoprotein oxidase holds promising potential in the synthesis of renewable products and demonstrates that insects can be an interesting source of novel biocatalysts.


Subject(s)
Furans , Oxidoreductases , Bees , Animals , Flavoproteins , Furaldehyde
10.
Enzymes ; 53: 97-111, 2023.
Article in English | MEDLINE | ID: mdl-37748839

ABSTRACT

NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.


Subject(s)
Histones , Nucleosomes , Amino Acid Sequence , Methylation , Histones/metabolism , Chromatin , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Demethylation , DNA/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism
11.
Curr Opin Struct Biol ; 82: 102669, 2023 10.
Article in English | MEDLINE | ID: mdl-37544113

ABSTRACT

Ancestral sequence reconstruction (ASR) provides insight into the changes within a protein sequence across evolution. More specifically, it can illustrate how specific amino acid changes give rise to different phenotypes within a protein family. Over the last few decades it has established itself as a powerful technique for revealing molecular common denominators that govern enzyme function. Here, we describe the strength of ASR in unveiling catalytic mechanisms and emerging phenotypes for a range of different proteins, also highlighting biotechnological applications the methodology can provide.


Subject(s)
Evolution, Molecular , Proteins , Phylogeny , Proteins/chemistry , Amino Acid Sequence , Phenotype
12.
J Biol Chem ; 299(7): 104904, 2023 07.
Article in English | MEDLINE | ID: mdl-37302552

ABSTRACT

Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.


Subject(s)
Aspartic Acid , Biocatalysis , Mixed Function Oxygenases , Streptomyces , Aspartic Acid/metabolism , Flavin-Adenine Dinucleotide/metabolism , Kinetics , Mixed Function Oxygenases/metabolism , NADP/metabolism , Oxidation-Reduction , Streptomyces/enzymology , Protein Domains , Arginine/metabolism , Substrate Specificity , Hydroxylation , Hydrogen Bonding , Static Electricity , Decarboxylation , Catalytic Domain
13.
FEBS J ; 290(21): 5114-5126, 2023 11.
Article in English | MEDLINE | ID: mdl-37366079

ABSTRACT

Patulin synthase (PatE) from Penicillium expansum is a flavin-dependent enzyme that catalyses the last step in the biosynthesis of the mycotoxin patulin. This secondary metabolite is often present in fruit and fruit-derived products, causing postharvest losses. The patE gene was expressed in Aspergillus niger allowing purification and characterization of PatE. This confirmed that PatE is active not only on the proposed patulin precursor ascladiol but also on several aromatic alcohols including 5-hydroxymethylfurfural. By elucidating its crystal structure, details on its catalytic mechanism were revealed. Several aspects of the active site architecture are reminiscent of that of fungal aryl-alcohol oxidases. Yet, PatE is most efficient with ascladiol as substrate confirming its dedicated role in biosynthesis of patulin.


Subject(s)
Patulin , Penicillium , Patulin/genetics , Patulin/metabolism , Fruit/metabolism , Fruit/microbiology , Penicillium/genetics
14.
Nat Commun ; 14(1): 1042, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36823138

ABSTRACT

Among the molecular mechanisms of adaptation in biology, enzyme functional diversification is indispensable. By allowing organisms to expand their catalytic repertoires and adopt fundamentally different chemistries, animals can harness or eliminate new-found substances and xenobiotics that they are exposed to in new environments. Here, we explore the flavin-containing monooxygenases (FMOs) that are essential for xenobiotic detoxification. Employing a paleobiochemistry approach in combination with enzymology techniques we disclose the set of historical substitutions responsible for the family's functional diversification in tetrapods. Remarkably, a few amino acid replacements differentiate an ancestral multi-tasking FMO into a more specialized monooxygenase by modulating the oxygenating flavin intermediate. Our findings substantiate an ongoing premise that enzymatic function hinges on a subset of residues that is not limited to the active site core.


Subject(s)
Mixed Function Oxygenases , Oxygenases , Animals , Oxygenases/metabolism , Mixed Function Oxygenases/metabolism , Catalysis , Flavins/metabolism
15.
Biochemistry ; 62(2): 419-428, 2023 01 17.
Article in English | MEDLINE | ID: mdl-35687874

ABSTRACT

Biocatalysis is a key tool in both green chemistry and biorefinery fields. NOV1 is a dioxygenase that catalyzes the one-step, coenzyme-free oxidation of isoeugenol into vanillin and holds enormous biotechnological potential for the complete valorization of lignin as a sustainable starting material for biobased chemicals, polymers, and materials. This study integrates computational, kinetic, structural, and biophysical approaches to characterize a new NOV1 variant featuring improved activity and stability compared to those of the wild type. The S283F replacement results in a 2-fold increased turnover rate (kcat) for isoeugenol and a 4-fold higher catalytic efficiency (kcat/Km) for molecular oxygen compared to those of the wild type. Furthermore, the variant exhibits a half-life that is 20-fold higher than that of the wild type, which most likely relates to the enhanced stabilization of the iron cofactor in the active site. Molecular dynamics supports this view, revealing that the S283F replacement decreases the optimal pKa and favors conformations of the iron-coordinating histidines compatible with an increased level of binding to iron. Importantly, whole cells containing the S283F variant catalyze the conversion of ≤100 mM isoeugenol to vanillin, yielding >99% molar conversion yields within 24 h. This integrative strategy provided a new enzyme for biotechnological applications and mechanistic insights that will facilitate the future design of robust and efficient biocatalysts.


Subject(s)
Dioxygenases , Lignin , Iron
16.
Methods Mol Biol ; 2558: 115-122, 2023.
Article in English | MEDLINE | ID: mdl-36169859

ABSTRACT

The interest in monoamine oxidases A and B (MAO A and B) is due to their central role in regulating the balance of neurotransmitters, both in the central nervous system and in peripheral organs. As validated drug targets for depression and Parkinson's disease, the elucidation of their crystal structures was an essential step to guide drug design investigations. The development of the heterologous expression system of MAO B in Pichia pastoris and the identification of the detergent, buffer, and precipitant conditions allowed to determine the first crystal structure of human MAO B in 2002. A detailed protocol to obtain reproducible MAO B crystals is described.


Subject(s)
Monoamine Oxidase , Parkinson Disease , Crystallization , Detergents , Drug Design , Humans , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism
17.
Biochemistry ; 62(2): 429-436, 2023 01 17.
Article in English | MEDLINE | ID: mdl-35881507

ABSTRACT

Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.


Subject(s)
Disaccharides , Oxidoreductases , Oxidoreductases/metabolism , Oxidation-Reduction , Disaccharides/chemistry , Catalytic Domain , Monosaccharides , Flavin-Adenine Dinucleotide/metabolism
18.
Nat Commun ; 13(1): 7195, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418310

ABSTRACT

Various 4-alkylphenols can be easily obtained through reductive catalytic fractionation of lignocellulosic biomass. Selective dehydrogenation of 4-n-propylguaiacol results in the formation of isoeugenol, a valuable flavor and fragrance molecule and versatile precursor compound. Here we present the engineering of a bacterial eugenol oxidase to catalyze this reaction. Five mutations, identified from computational predictions, are first introduced to render the enzyme more thermostable. Other mutations are then added and analyzed to enhance chemoselectivity and activity. Structural insight demonstrates that the slow catalytic activity of an otherwise promising enzyme variant is due the formation of a slowly-decaying covalent substrate-flavin cofactor adduct that can be remedied by targeted residue changes. The final engineered variant comprises eight mutations, is thermostable, displays good activity and acts as a highly chemoselective 4-n-propylguaiacol oxidase. We lastly use our engineered biocatalyst in an illustrative preparative reaction at gram-scale. Our findings show that a natural enzyme can be redesigned into a tailored biocatalyst capable of valorizing lignin-based monophenols.


Subject(s)
Lignin , Oxidoreductases , Lignin/chemistry , Oxidoreductases/genetics , Eugenol , Hydrolases
19.
Redox Biol ; 56: 102436, 2022 10.
Article in English | MEDLINE | ID: mdl-35998431

ABSTRACT

Reactive oxygen species are unstable molecules generated by the partial reduction of dioxygen. NADPH oxidases are a ubiquitous family of enzymes devoted to ROS production. They fuel an array of physiological roles in different species and are chemically demanding enzymes requiring FAD, NADPH and heme prosthetic groups in addition to either calcium or a various number of cytosolic mediators for activity. These activating partners are exclusive components that partition and distinguish the NOX members from one another. To gain insight into the evolution of these activating mechanisms, and in general in their evolutionary history, we conducted an in-depth phylogenetic analysis of the NADPH oxidase family in eukaryotes. We show that all characterized NOXs share a common ancestor, which comprised a fully formed catalytic unit. Regarding the activation mode, we identified calcium-dependency as the earliest form of NOX regulation. The protein-protein mode of regulation would have evolved more recently by gene-duplication with the concomitant loss of the EF-hands motif region. These more recent events generated the diversely activated NOX systems as observed in extant animals and fungi.


Subject(s)
Calcium , NADPH Oxidases , Animals , Eukaryota/genetics , Flavin-Adenine Dinucleotide , Heme , NADP , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genetics , Oxygen , Phylogeny , Reactive Oxygen Species
20.
iScience ; 25(7): 104665, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35856020

ABSTRACT

The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A-/- hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a-/- hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...