Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464158

ABSTRACT

Magnesium (Mg2+) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg2+ via conserved Mg2+ channels and transporters. The transporters are required for growth when Mg2+ is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters. Here we report the first structure of the Mg2+ transporter MgtA solved by single particle cryo-electron microscopy (cryo-EM). Using mild membrane extraction, we obtained high resolution structures of both a homodimeric form (2.9 Å), the first for a P-type ATPase, and a monomeric form (3.6 Å). Each monomer unit of MgtA displays a structural architecture that is similar to other P-type ATPases with a transmembrane domain and two soluble domains. The dimer interface consists of contacts between residues in adjacent soluble nucleotide binding and phosphotransfer regions of the haloacid dehalogenase (HAD) domain. We suggest oligomerization is a conserved structural feature of the diverse family of P-type ATPase transporters. The ATP binding site and conformational dynamics upon nucleotide binding to MgtA were characterized using a combination of cryo-EM, molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and mutagenesis. Our structure also revealed a Mg2+ ion in the transmembrane segments, which, when combined with sequence conservation and mutagenesis studies, allowed us to propose a model for Mg2+ transport across the lipid bilayer. Finally, our work revealed the N-terminal domain structure and cytoplasmic Mg2+ binding sites, which have implications for related P-type ATPases defective in human disease.

2.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38328078

ABSTRACT

Membrane protein structure determination is not only technically challenging but is further complicated by the removal or displacement of lipids, which can result in non-native conformations or a strong preference for certain states at the exclusion of others. This is especially applicable to mechanosensitive channels (MSC's) that evolved to gate in response to subtle changes in membrane tension transmitted through the lipid bilayer. E. coli MscS, a model bacterial system, is an ancestral member of the large family of MSCs found across all phyla of walled organisms. As a tension sensor, MscS is very sensitive and highly adaptive; it readily opens under super-threshold tension and closes under no tension, but under lower tensions, it slowly inactivates and can only recover when tension is released. However, existing cryo-EM structures do not explain the entire functional gating cycle of open, closed, and inactivated states. A central question in the field has been the assignment of the frequently observed non-conductive conformation to either a closed or inactivated state. Here, we present a 3 Å MscS structure in native nanodiscs obtained with Glyco-DIBMA polymer extraction, eliminating the lipid removal step that is common to all previous structures. Besides the protein in the non-conductive conformation, we observe well-resolved densities of four endogenous phospholipid molecules intercalating between the lipid-facing and pore-lining helices in preferred orientations. Mutations of positively charged residues coordinating these lipids inhibit MscS inactivation, whereas removal of a negative charge near the lipid-filled crevice increases inactivation. The functional data allows us to assign this class of structures to the inactivated state. This structure reveals preserved lipids in their native locations, and the functional effects of their destabilization illustrate a novel inactivation mechanism based on an uncoupling of the peripheral tension-sensing helices from the gate.

3.
Nat Commun ; 14(1): 7207, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938562

ABSTRACT

Magnesium ions (Mg2+) play an essential role in cellular physiology. In mitochondria, protein and ATP synthesis and various metabolic pathways are directly regulated by Mg2+. MRS2, a magnesium channel located in the inner mitochondrial membrane, mediates the influx of Mg2+ into the mitochondrial matrix and regulates Mg2+ homeostasis. Knockdown of MRS2 in human cells leads to reduced uptake of Mg2+ into mitochondria and disruption of the mitochondrial metabolism. Despite the importance of MRS2, the Mg2+ translocation and regulation mechanisms of MRS2 are still unclear. Here, using cryo-EM we report the structures of human MRS2 in the presence and absence of Mg2+ at 2.8 Å and 3.3 Å, respectively. From the homo-pentameric structures, we identify R332 and M336 as major gating residues, which are then tested using mutagenesis and two cellular divalent ion uptake assays. A network of hydrogen bonds is found connecting the gating residue R332 to the soluble domain, potentially regulating the gate. Two Mg2+-binding sites are identified in the MRS2 soluble domain, distinct from the two sites previously reported in CorA, a homolog of MRS2 in prokaryotes. Altogether, this study provides the molecular basis for understanding the Mg2+ translocation and regulatory mechanisms of MRS2.


Subject(s)
Agaricales , Magnesium , Humans , Cryoelectron Microscopy , Mitochondria , Mitochondrial Membranes , Translocation, Genetic
4.
Nat Commun ; 14(1): 6710, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872202

ABSTRACT

The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.


Subject(s)
Anti-HIV Agents , HIV Fusion Inhibitors , HIV Infections , HIV-1 , Humans , HIV-1/physiology , Anti-HIV Agents/therapeutic use , HIV Envelope Protein gp120/genetics
5.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662257

ABSTRACT

Magnesium ions (Mg2+) play an essential role in cellular physiology. In mitochondria, protein and ATP synthesis and various metabolic pathways are directly regulated by Mg2+. MRS2, a magnesium channel located in the inner mitochondrial membrane, mediates the influx of Mg2+ into the mitochondrial matrix and regulates Mg2+ homeostasis. Knockdown of MRS2 in human cells leads to reduced uptake of Mg2+ into mitochondria and disruption of the mitochondrial metabolism. Despite the importance of MRS2, the Mg2+ translocation and regulation mechanisms of MRS2 are still unclear. Here, using cryo-EM we determined the structure of human MRS2 in the presence and absence of Mg2+ at 2.8 Å and 3.3 Å, respectively. From the homo-pentameric structures, we identified R332 and M336 as major gating residues, which were then tested using mutagenesis and two cellular divalent ion uptake assays. A network of hydrogen bonds was found connecting the gating residue R332 to the soluble domain, potentially regulating the gate. Two Mg2+-binding sites were identified in the MRS2 soluble domain, distinct from the two sites previously reported in CorA, a homolog of MRS2 in prokaryotes. Altogether, this study provides the molecular basis for understanding the Mg2+ translocation and regulatory mechanisms of MRS2.

6.
Nat Commun ; 14(1): 2571, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156797

ABSTRACT

Mfsd2a is the transporter for docosahexaenoic acid (DHA), an omega-3 fatty acid, across the blood brain barrier (BBB). Defects in Mfsd2a are linked to ailments from behavioral and motor dysfunctions to microcephaly. Mfsd2a transports long-chain unsaturated fatty-acids, including DHA and α-linolenic acid (ALA), that are attached to the zwitterionic lysophosphatidylcholine (LPC) headgroup. Even with the recently determined structures of Mfsd2a, the molecular details of how this transporter performs the energetically unfavorable task of translocating and flipping lysolipids across the lipid bilayer remains unclear. Here, we report five single-particle cryo-EM structures of Danio rerio Mfsd2a (drMfsd2a): in the inward-open conformation in the ligand-free state and displaying lipid-like densities modeled as ALA-LPC at four distinct positions. These Mfsd2a snapshots detail the flipping mechanism for lipid-LPC from outer to inner membrane leaflet and release for membrane integration on the cytoplasmic side. These results also map Mfsd2a mutants that disrupt lipid-LPC transport and are associated with disease.


Subject(s)
Fatty Acids, Omega-3 , Symporters , Symporters/metabolism , Membrane Transport Proteins/metabolism , Blood-Brain Barrier/metabolism , Biological Transport , Docosahexaenoic Acids , Lysophosphatidylcholines/chemistry
7.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131729

ABSTRACT

The HIV-1 entry inhibitor temsavir prevents CD4 from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir-resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveal that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad-antiviral activity.

8.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37036445

ABSTRACT

During oxidative stress neurons release lipids that are internalized by glia. Defects in this coordinated process play an important role in several neurodegenerative diseases. Yet, the mechanisms of lipid release and its consequences on neuronal health are unclear. Here, we demonstrate that lipid-protein particle release by autolysosome exocytosis protects neurons from ferroptosis, a form of cell death driven by lipid peroxidation. We show that during oxidative stress, peroxidated lipids and iron are released from neurons by autolysosomal exocytosis which requires the exocytic machinery VAMP7 and syntaxin 4. We observe membrane-bound lipid-protein particles by TEM and demonstrate that these particles are released from neurons using cryoEM. Failure to release these lipid-protein particles causes lipid hydroperoxide and iron accumulation and sensitizes neurons to ferroptosis. Our results reveal how neurons protect themselves from peroxidated lipids. Given the number of brain pathologies that involve ferroptosis, defects in this pathway likely play a key role in the pathophysiology of neurodegenerative disease.


Subject(s)
Exocytosis , Ferroptosis , Lysosomes , Neurodegenerative Diseases , Humans , Ferroptosis/genetics , Iron/metabolism , Lipid Peroxidation , Lipid Peroxides , Neurons/metabolism
9.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: mdl-36695574

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endosomes/metabolism , Ion Channels/metabolism
10.
iScience ; 26(1): 105783, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36514310

ABSTRACT

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

11.
bioRxiv ; 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36263072

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.

12.
Viruses ; 14(5)2022 05 11.
Article in English | MEDLINE | ID: mdl-35632764

ABSTRACT

Individuals infected with the SARS-CoV-2 Delta variant, lineage B.1.617.2, exhibit faster initial infection with a higher viral load than prior variants, and pseudotyped viral particles bearing the SARS-CoV-2 Delta variant spike protein induce a faster initial infection rate of target cells compared to those bearing other SARS-CoV-2 variant spikes. Here, we show that pseudotyped viral particles bearing the Delta variant spike form unique aggregates, as evidenced by negative stain and cryogenic electron microscopy (EM), flow cytometry, and nanoparticle tracking analysis. Viral particles pseudotyped with other SARS-CoV-2 spike variants do not show aggregation by any of these criteria. The contribution to infection kinetics of the Delta spike's unique property to aggregate is discussed with respect to recent evidence for collective infection by other viruses. Irrespective of this intriguing possibility, spike-dependent aggregation is a new functional parameter of spike-expressing viral particles to evaluate in future spike protein variants.


Subject(s)
Retroviridae , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Retroviridae/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35447082

ABSTRACT

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Cryoelectron Microscopy , DNA/metabolism , Dimerization , Humans , Male , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcriptional Activation
14.
bioRxiv ; 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35441171

ABSTRACT

Individuals infected with the SARS-CoV-2 Delta variant, lineage B.1.617.2, exhibit faster initial infection with a higher viral load than prior variants, and pseudotyped particles bearing the SARS-CoV-2 Delta variant spike protein induce a faster initial infection rate of target cells compared to those bearing other SARS-CoV-2 variant spikes. Here, we show that pseudotyped particles bearing the Delta variant spike form unique aggregates, as evidenced by negative stain and cryogenic electron microscopy (EM), flow cytometry, and nanoparticle tracking analysis. Viral particles pseudotyped with other SARS-CoV-2 spike variants do not show aggregation by any of these criteria. The contribution to infection kinetics of the Delta spike’s unique property to aggregate is discussed with respect to recent evidence for collective infection by other viruses. Irrespective of this intriguing possibility, spike-dependent aggregation is a new functional parameter of spike-expressing viral particles to evaluate in future spike protein variants.

15.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33658209

ABSTRACT

Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.


Subject(s)
Excitatory Amino Acid Transporter 3/chemistry , Protons , Binding Sites , Cryoelectron Microscopy , Excitatory Amino Acid Transporter 3/metabolism , Glutamic Acid/metabolism , Humans , Ions/metabolism , Sodium/chemistry
16.
Nat Plants ; 6(12): 1480-1490, 2020 12.
Article in English | MEDLINE | ID: mdl-33230314

ABSTRACT

Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/metabolism , Molecular Structure , Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism
17.
Sci Rep ; 10(1): 11953, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686698

ABSTRACT

Extracellular vesicles (EVs) are important mediators of cell-to-cell communication and have been implicated in several pathologies including those of the central nervous system. They are released by all cell types, including neurons, and are highly heterogenous in size and composition. Yet much remains unknown regarding the biophysical characteristics of different EVs. Here, using cryo-electron microscopy (cryoEM), we analyzed the size distribution and morphology of EVs released from primary cortical neurons. We discovered massive macromolecular clusters on the luminal face of EV membranes. These clusters are predominantly found on medium-sized vesicles, suggesting that they may be specific to microvesicles as opposed to exosomes. We propose that these clusters serve as microdomains for EV signaling and play an important role in EV physiology.


Subject(s)
Cell Membrane/metabolism , Extracellular Vesicles/metabolism , Neurons/metabolism , Animals , Cell Communication , Cryoelectron Microscopy , Extracellular Vesicles/ultrastructure , Humans , Microscopy, Fluorescence , Models, Biological , Neurons/cytology , Rats
18.
Cell ; 177(6): 1522-1535.e14, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31130380

ABSTRACT

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.


Subject(s)
Astrocytes/metabolism , Fatty Acids/metabolism , Neurons/metabolism , Animals , Apolipoproteins E/metabolism , Apolipoproteins E/physiology , Astrocytes/physiology , Brain/metabolism , Fatty Acids/toxicity , Homeostasis , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
19.
Elife ; 72018 08 15.
Article in English | MEDLINE | ID: mdl-30109985

ABSTRACT

Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2-2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.


Subject(s)
Kv1.2 Potassium Channel/ultrastructure , Lipid Bilayers/chemistry , Nanocomposites/ultrastructure , Shab Potassium Channels/ultrastructure , Animals , Cryoelectron Microscopy , Crystallography, X-Ray , Ion Channel Gating , Kv1.2 Potassium Channel/chemistry , Nanocomposites/chemistry , Potassium/chemistry , Protein Conformation , Rats , Shab Potassium Channels/chemistry
20.
Sci Rep ; 6: 32563, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27576344

ABSTRACT

Selenocysteine synthase (SepSecS) catalyzes the terminal reaction of selenocysteine, and is vital for human selenoproteome integrity. Autosomal recessive inheritance of mutations in SepSecS-Ala239Thr, Thr325Ser, Tyr334Cys and Tyr429*-induced severe, early-onset, neurological disorders in distinct human populations. Although harboring different mutant alleles, patients presented remarkably similar phenotypes typified by cerebellar and cerebral atrophy, seizures, irritability, ataxia, and extreme spasticity. However, it has remained unclear how these genetic alterations affected the structure of SepSecS and subsequently elicited the development of a neurological pathology. Herein, our biophysical and structural characterization demonstrates that, with the exception of Tyr429*, pathogenic mutations decrease protein stability and trigger protein misfolding. We propose that the reduced stability and increased propensity towards misfolding are the main causes for the loss of SepSecS activity in afflicted patients, and that these factors contribute to disease progression. We also suggest that misfolding of enzymes regulating protein synthesis should be considered in the diagnosis and study of childhood neurological disorders.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Ataxia/genetics , Muscle Spasticity/genetics , RNA, Transfer/chemistry , Seizures/genetics , Selenocysteine/chemistry , Age of Onset , Amino Acid Substitution , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Ataxia/enzymology , Ataxia/pathology , Atrophy , Binding Sites , Cerebellum/enzymology , Cerebellum/pathology , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Crystallography, X-Ray , Humans , Irritable Mood , Models, Molecular , Muscle Spasticity/enzymology , Muscle Spasticity/pathology , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Stability , RNA, Transfer/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seizures/enzymology , Seizures/pathology , Selenocysteine/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...