Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 11954, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831379

ABSTRACT

Plant-parasitic nematodes (PPN) are responsible for severe yield losses in crop production. Management is challenging as effective and safe means are rare. Recently, it has been discovered that the succinate dehydrogenase (SDH) inhibitor fluopyram is highly effective against PPN while accompanying an excellent safety profile. Here we show that fluopyram is a potent inhibitor of SDH in nematodes but not in mammals, insects and earthworm, explaining the selectivity on molecular level. As a consequence of SDH inhibition, fluopyram impairs ATP generation and causes paralysis in PPN and Caenorhabditis elegans. Interestingly, efficacy differences of fluopyram amongst PPN species can be observed. Permanent exposure to micromolar to nanomolar amounts of fluopyram prevents Meloidogyne spp. and Heterodera schachtii infection and their development at the root. Preincubation of Meloidogyne incognita J2 with fluopyram followed by a recovery period effectively reduces gall formation. However, the same procedure does not inhibit H. schachtii infection and development. Sequence comparison of sites relevant for ligand binding identified amino acid differences in SDHC which likely mediate selectivity, coincidently revealing a unique amino acid difference within SDHC conserved among Heterodera spp. Docking and C. elegans mutant studies suggest that this minute difference mediates altered sensitivity of H. schachtii towards fluopyram.


Subject(s)
Caenorhabditis elegans , Tylenchoidea , Amino Acids/pharmacology , Animals , Benzamides/pharmacology , Mammals , Pyridines
3.
J Comput Aided Mol Des ; 35(4): 493-503, 2021 04.
Article in English | MEDLINE | ID: mdl-32638183

ABSTRACT

In order to assess safety and efficacy of small molecule drugs as well as agrochemicals, it is key to understanding the nature of protein-ligand interaction on an atomistic level. Prothioconazole (PTZ), although commonly considered to be an azole-like inhibitor of sterol 14-α demethylase (CYP51), differs from classical azoles with respect to how it binds its target. The available evidence is only indirect, as crystallographic elucidation of CYP51 complexed with PTZ have not yet been successful. We derive a binding mode hypothesis for PTZ binding its target, compare to DPZ, a triazole-type metabolite of PTZ, and set our findings into context of its biochemistry and spectroscopy. Quantum Theory of Atoms in Molecules (QTAIM) analysis of computed DFT electron densities is used to qualitatively understand the topology of binding, revealing significant differences of how R- and S-enantiomers are binding and, in particular, how the thiozolinthione head of PTZ binds to heme compared to DPZ's triazole head. The difference of binding enthalpy is calculated at coupled cluster (DLPNO-CCSD(T)) level of theory, and we find that DPZ binds stronger to CYP51 than PTZ by more than ΔH ~ 11 kcal/mol.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Sterol 14-Demethylase/metabolism , Triazoles/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , Fungal Proteins/antagonists & inhibitors , Fungi/drug effects , Fungi/enzymology , Fungicides, Industrial/chemistry , Humans , Molecular Docking Simulation , Quantum Theory , Triazoles/chemistry
4.
Curr Biol ; 28(2): 268-274.e5, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29337073

ABSTRACT

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Evolution, Molecular , Gene Duplication , Hemiptera/genetics , Insecticide Resistance , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Gene Dosage , Hemiptera/drug effects
5.
Chemphyschem ; 16(13): 2760-2767, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26175091

ABSTRACT

Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands.

6.
Pestic Biochem Physiol ; 121: 31-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26047109

ABSTRACT

Flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone), a member of the new class of butenolide insecticides, contains a novel bioactive scaffold as pharmacophore. It is very versatile in terms of application methods to a variety of crops, exhibits excellent and fast action against a broad spectrum of sucking pest insects including selected neonicotinoid resistant pest populations such as whiteflies and aphids expressing metabolic resistance mechanisms. As a partial agonist flupyradifurone reversibly binds to insect nicotinic acetylcholine receptors (nAChRs) and lacks metabolization by CYP6CM1, a cytochrome P450 over-expressed in cotton whiteflies resistant to imidacloprid and pymetrozine. The butenolide insecticides exhibit structure-activity relationships (SAR) that are different from other nAChR agonists such as the classes of neonicotinoids and sulfoximines. The paper briefly reviews the discovery of the butenolide insecticide flupyradifurone, its SAR differentiating it from established nAChR agonists and a molecular docking approach using the binding site model of CYP6CM1vQ of Bemisia tabaci known to confer metabolic resistance to neonicotinoid insecticides.


Subject(s)
4-Butyrolactone/analogs & derivatives , Insecticides , Nicotinic Agonists , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Animals , Insect Proteins/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Molecular Docking Simulation , Molecular Structure , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism
7.
Insect Biochem Mol Biol ; 63: 14-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25976541

ABSTRACT

Anthranilic diamides and flubendiamide belong to a new chemical class of insecticides acting as conformation sensitive activators of the insect ryanodine receptor (RyR). These compounds control a diverse range of different herbivorous insects including diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a notorious global pest on cruciferous crops, which recently developed resistance due to target-site mutations located in the trans-membrane domain of the Plutella RyR. In the present study we further investigated the genetics and functional implications of a RyR G4946E target-site mutation we recently identified in a Philippine diamondback moth strain (Sudlon). Strain Sudlon is homozygous for the G4946E mutation and has been maintained under laboratory conditions without selection pressure for almost four years, and still exhibit stable resistance ratios of >2000-fold to all commercial diamides. Its F1 progeny resulting from reciprocal crosses with a susceptible strain (BCS-S) revealed no maternal effects and a diamide susceptible phenotype, suggesting an autosomally almost recessive mode of inheritance. Subsequent back-crosses indicate a near monogenic nature of the diamide resistance in strain Sudlon. Radioligand binding studies with Plutella thoracic microsomal membrane preparations provided direct evidence for the dramatic functional implications of the RyR G4946E mutation on both diamide specific binding and its concentration dependent modulation of [(3)H]ryanodine binding. Computational modelling based on a cryo-EM structure of rabbit RyR1 suggests that Plutella G4946E is located in trans-membrane helix S4 close to S4-S5 linker domain supposed to be involved in the modulation of the voltage sensor, and another recently described mutation, I4790M in helix S2 approx. 13 Å opposite of G4946E. Genotyping by pyrosequencing revealed the presence of the RyR G4946E mutation in larvae collected in 2013/14 in regions of ten different countries where diamide insecticides largely failed to control diamondback moth populations. Thus, our study highlights the global importance of the G4946E RyR target-site mutation, which as a mechanism on its own, confers high-level resistance to diamide insecticides in diamondback moth.


Subject(s)
Benzamides , Insecticide Resistance/genetics , Moths/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Sulfones , ortho-Aminobenzoates , Amino Acid Sequence , Animals , Geography , Insecticides , Larva , Models, Molecular , Mutation , Radioligand Assay , Ryanodine Receptor Calcium Release Channel/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...