Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732269

ABSTRACT

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Subject(s)
Aldehydes , Anti-Bacterial Agents , Biofilms , Cyclopentane Monoterpenes , Olive Oil , Phenols , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Olive Oil/chemistry , Olive Oil/pharmacology , Phenols/pharmacology , Phenols/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Bacterial Adhesion/drug effects
2.
Plant J ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761363

ABSTRACT

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.

3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628881

ABSTRACT

In recent decades, antibiotic misuse has emerged as an important risk factor for the appearance of multi-drug-resistant bacteria, and, recently, antimicrobial resistance has also been described in Chlamydia trachomatis as the leading cause of bacterial sexually transmitted diseases worldwide. Herein, we investigated, for the first time, the antibacterial activity against C. trachomatis of a polyphenolic extract of extra virgin olive oil (EVOO), alongside purified oleocanthal and oleacein, two of its main components, in natural deep eutectic solvent (NaDES), a biocompatible solvent. The anti-chlamydial activity of olive-oil polyphenols (OOPs) was tested in the different phases of chlamydial developmental cycle by using an in vitro infection model. Transmission and scanning electron microscopy analysis were performed for investigating potential alterations of adhesion and invasion, as well as morphology, of chlamydial elementary bodies (EBs) to host cells. The main result of our study is the anti-bacterial activity of OOPs towards C. trachomatis EBs down to a total polyphenol concentration of 1.7 µg/mL, as shown by a statistically significant decrease (93.53%) of the total number of chlamydial-inclusion-forming units (p < 0.0001). Transmission and scanning electron microscopy analysis supported its anti-chlamydial effect, suggesting that OOP might damage the chlamydial outer layers, impairing their structural integrity and hindering EB capability to infect the host cell. In conclusion, OOPs may represent an interesting alternative therapeutic option toward C. trachomatis, although further studies are necessary for exploring its clinical applications.


Subject(s)
Chlamydia trachomatis , Polyphenols , Olive Oil , Anti-Bacterial Agents/pharmacology , Carbon
4.
Arch Biochem Biophys ; 745: 109714, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37549802

ABSTRACT

RNA is a fundamental nucleic acid for life and it plays important roles in the regulation of gene transcription, post-transcriptional regulation, and epigenetic regulation. Recently, the focus on this nucleic acid has significantly increased due to the development of mRNA vaccines and RNA-based gene therapy protocols. Unfortunately, RNA based products show constrains mainly owing to instability and easy degradability of the RNA molecules. Indeed, unlike the DNA molecule which has a great intrinsic stability, RNA is more prone to degradation and this process is accelerated under thermal treatment. Here we describe a method that involves the use of Natural Deep Eutectic Solvents (NaDES) capable of slowing down RNA degradation process. Our results show that this technology seems suitable for improving the stability of specific RNA molecules particularly susceptible to thermal-induced degradation. Therefore, this technique represents a valuable tool to stabilize RNA molecules used in gene therapy and mRNA vaccines.


Subject(s)
Deep Eutectic Solvents , RNA , Solvents , Epigenesis, Genetic , Plant Extracts
5.
Mol Aspects Med ; 93: 101205, 2023 10.
Article in English | MEDLINE | ID: mdl-37515939

ABSTRACT

Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.


Subject(s)
Anthracyclines , Neoplasms , Humans , Anthracyclines/pharmacology , Anthracyclines/therapeutic use , Drug Resistance, Neoplasm/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antibiotics, Antineoplastic/adverse effects , Neoplasms/drug therapy
7.
Plants (Basel) ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145748

ABSTRACT

The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.

8.
Plants (Basel) ; 11(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684285

ABSTRACT

We previously reported that proline modulates root meristem size in Arabidopsis by controlling the ratio between cell division and cell differentiation. Here, we show that proline metabolism affects the levels of superoxide anion (O2•-) and hydrogen peroxide (H2O2), which, in turn, modulate root meristem size and root elongation. We found that hydrogen peroxide plays a major role in proline-mediated root elongation, and its effects largely overlap those induced by proline, influencing root meristem size, root elongation, and cell cycle. Though a combination of genetic and pharmacological evidence, we showed that the short-root phenotype of the proline-deficient p5cs1 p5cs2/P5CS2, an Arabidopsis mutant homozygous for p5cs1 and heterozygous for p5cs2, is caused by H2O2 accumulation and is fully rescued by an effective H2O2 scavenger. Furthermore, by studying Arabidopsis mutants devoid of ProDH activity, we disclosed the essential role of this enzyme in the modulation of root meristem size as the main enzyme responsible for H2O2 production during proline degradation. Proline itself, on the contrary, may not be able to directly control the levels of H2O2, although it seems able to enhance the enzymatic activity of catalase (CAT) and ascorbate peroxidase (APX), the two most effective scavengers of H2O2 in plant cells. We propose a model in which proline metabolism participates in a delicate antioxidant network to balance H2O2 formation and degradation and fine-tune root meristem size in Arabidopsis.

9.
Front Pharmacol ; 13: 885735, 2022.
Article in English | MEDLINE | ID: mdl-35548334

ABSTRACT

Extra virgin olive oil (EVOO) from Olea europaea L. drupes, a cornerstone in the Mediterranean diet, is well known for its nutritional and health properties, especially for prevention of cardiovascular diseases and metabolic disorders. Traditionally, beneficial health effects have been largely attributed to the high concentration of monounsaturated fatty acids, and in recent years, these have also been related to other components including oleacein and oleocanthal. Here, we evaluated, for the first time, the antimicrobial activity of different green extra virgin olive oil-based formulations in natural deep eutectic solvents (NaDESs) emerging as powerful and biocompatible solvents. Specifically, the antimicrobial activity of the EVOO extract, as well as purified oleocanthal and oleacein in two NaDESs (choline/glycerol and choline/propylene glycol), against several drug-resistant clinical isolates and standard microbial strains has been evaluated. The main result was the inhibitory activity of the EVOO extract in choline/glycerol as well as oleacein in choline/propylene glycol toward drug-resistant Gram-positive and -negative strains. Specifically, the EVOO extract in choline/glycerol showed the highest antibacterial activity against several clinical strains of Staphylococcus aureus, whereas oleacein in choline/propylene glycol was the most effective toward various clinical strains of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, all the formulations tested were effective against Candida spp. In conclusion, our results suggest EVOO-based formulations in NaDESs as an interesting strategy that may help in reducing the risk of development of drug resistance. Under this perspective, the usage of NaDESs for the preparation of new antimicrobial formulations may represent a promising approach.

10.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35455454

ABSTRACT

The endocannabinoid system is involved in the nociceptive and anti-inflammatory pathways, and a lowered expression of CB2 receptors has been associated with inflammatory conditions, such as osteoarthritis (OA). This suggests that CB2 modulators could be novel therapeutic tools to treat OA. In the present study, the involvement of Harpagophytum procumbens root extract, a common ingredient of nutraceuticals used to treat joint disorders, in CB2 modulation has been evaluated. Moreover, to clarify the effects of the pure single components, the bioactive constituent, harpagoside, and the main volatile compounds were studied alone or in a reconstituted mixture. Human fibroblast-like synoviocytes, extracted by joints of patients, who underwent a total knee replacement, were treated with an H. procumbens root extract dissolved in DMSO (HPEDMSO). The effectiveness of HPEDMSO to affect CB2 pathways was studied by analyzing the modulation of cAMP, the activation of PKA and ERK MAP kinase, and the modulation of MMP-13 production. HPEDMSO was able to inhibit the cAMP production and MAP kinase activation and to down-regulate the MMP-13 production. Pure compounds were less effective than the whole phytocomplex, thus suggesting the involvement of synergistic interactions. Present findings encourage further mechanistic studies and support the scientific basis of the use of H. procumbens in joint disorders.

11.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408747

ABSTRACT

trans-Resveratrol is a natural bioactive compound with well-recognized health promoting effects. When exposed to UV light, this compound can undergo a photochemically induced trans/cis isomerization and a 6π electrochemical cyclization with the subsequent formation of 2,4,6-trihydroxyphenanthrene (THP). THP is a potentially harmful compound which can exert genotoxic effects. In this work we improved the chromatographic separation and determination of the two resveratrol isomers and of THP by using a non-commercial pentafluorophenyl stationary phase. We assessed the effect of natural deep eutectic solvents (NaDES) as possible photo-protective agents by evaluating cis-resveratrol isomer and THP formation under different UV-light exposure conditions with the aim of enhancing resveratrol photostability and inhibiting THP production. Our results demonstrate a marked photoprotective effect exerted by glycerol-containing NaDES, and in particular by proline/glycerol NaDES, which exerts a strong inhibitory effect on the photochemical isomerization of resveratrol and significantly limits the formation of the toxic derivative THP. Considering the presence of resveratrol in various commercial products, these results are of note in view of the potential genotoxic risk associated with its photochemical degradation products and in view of the need for the development of green, eco-sustainable and biocompatible resveratrol photo-stable formulations.


Subject(s)
Deep Eutectic Solvents , Glycerol , Isomerism , Phenanthrenes , Resveratrol/chemistry , Resveratrol/pharmacology , Solvents/chemistry
12.
Plant Physiol Biochem ; 170: 123-132, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34871830

ABSTRACT

Polyamine acetylation has an important regulatory role in polyamine metabolism. It is catalysed by GCN5-related N-acetyltransferases, which transfer acetyl groups from acetyl-coenzyme A to the primary amino groups of spermidine, spermine (Spm), or other polyamines and diamines, as was shown for the human Spermidine/Spermine N1-acetyltransferase 1 (HsSSAT1). SSAT homologues specific for thialysine, a cysteine-derived lysine analogue, were also identified (e.g., HsSSAT2). Two HsSSAT1 homologues are present in Arabidopsis, namely N-acetyltransferase activity (AtNATA) 1 and 2. AtNATA1 was previously shown to be specific for 1,3-diaminopropane, ornithine, putrescine and thialysine, rather than Spm and spermidine. In the present study, in an attempt to find a plant Spm-specific SSAT, AtNATA2 was expressed in a heterologous bacterial system and catalytic properties of the recombinant protein were determined. Data indicate that recombinant AtNATA2 preferentially acetylates 1,3-diaminopropane and thialysine, throwing further light on AtNATA1 substrate specificity. Structural analyses evidenced that the preference of AtNATA1, AtNATA2 and HsSSAT2 for short amine substrates can be ascribed to different main-chain conformation or substitution of HsSSAT1 residues interacting with Spm distal regions. Moreover, gene expression studies evidenced that AtNATA1 gene, but not AtNATA2, is up-regulated by cytokinins, thermospermine and Spm, suggesting the existence of a link between AtNATAs and N1-acetyl-Spm metabolism. This study provides insights into polyamine metabolism and structural determinants of substrate specificity of non Spm-specific SSAT homologues.


Subject(s)
Arabidopsis , Cysteine , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cysteine/analogs & derivatives , Cysteine/metabolism , Diamines , Spermine
13.
Front Plant Sci ; 11: 582877, 2020.
Article in English | MEDLINE | ID: mdl-33193531

ABSTRACT

Seed yield, a major determinant for the commercial success of grain crops, critically depends on pollen viability, which is dramatically reduced by environmental stresses, such as drought, salinity, and extreme temperatures. Salinity, in particular, is a major problem for crop yield known to affect about 20% of all arable land and cause huge economic losses worldwide. Flowering plants are particularly sensitive to environmental stress during sexual reproduction, and even a short exposure to stressing conditions can severely hamper reproductive success, and thus reduce crop yield. Since proline is required for pollen fertility and accumulates in plant tissues in response to different abiotic stresses, a role of proline in pollen protection under salt stress conditions can be envisaged. In this perspective, we analyze old and new data to evaluate the importance of pollen development under saline conditions, and discuss the possibility of raising proline levels in pollen grains as a biotechnological strategy to stabilize seed yield in the presence of salt stress. The overall data confirm that proline is necessary to preserve pollen fertility and limit seed loss under stressful conditions. However, at present, we have not enough data to conclude whether or not raising proline over wildtype levels in pollen grains can effectively ameliorate seed yield under saline conditions, and further work is still required.

14.
Molecules ; 25(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825684

ABSTRACT

Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/therapeutic use , Cardiovascular Diseases/prevention & control , Neurodegenerative Diseases/prevention & control , Animals , Humans
15.
J Cardiovasc Med (Hagerstown) ; 20(7): 414-418, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31593558

ABSTRACT

: The 2015 European Society of Cardiology (ESC) guidelines for the management of infective endocarditis recommend the use of a multidisciplinary team in the care of patients with infective endocarditis. A standardized collaborative approach should be implemented in centres with immediate access to different imaging techniques, cardiac surgery and health professionals from several specialties. This position paper has been produced by the Task Force for Management of Infective Endocarditis of Italian Society of Echocardiography and Cardiovascular Imaging (SIECVI) with the aim of providing recommendations for the implementation of the Endocarditis Team within the Italian hospital network. On the basis of the Italian hospital network with many cardiology facilities encompassing a total of 405 intensive cardiac care units (ICCUs) across the country, 224 (3.68 per million inhabitants) of which have on-site 24-h PCI capability, but with relatively few centres equipped with cardiac surgery and nuclear medicine, in the present article, the SIECVI Task Force for Management of Infective Endocarditis develops the idea of a network where 'functional' reference centres act as a link with the periphery and with 'structural' reference centres. A number of minimum characteristics are provided for these 'functional' reference centres. Outcome and cost analysis of implementing an Endocarditis Team with functional referral is expected to be derived from ongoing Italian and European registries.


Subject(s)
Cardiac Imaging Techniques/standards , Cardiology Service, Hospital/standards , Delivery of Health Care, Integrated/standards , Endocarditis/diagnostic imaging , Endocarditis/therapy , Patient Care Team/standards , Regional Health Planning/standards , Consensus , Humans , Interdisciplinary Communication , Predictive Value of Tests , Treatment Outcome
16.
Int J Mol Sci ; 20(3)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736391

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aß) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aß. BV2 murine microglia cells treated with both Aß25⁻35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1ß, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aß only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aß-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aß1⁻42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arabidopsis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Locomotion/drug effects , Mass Spectrometry , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neurons/drug effects , Neurons/metabolism , Phytochemicals/chemistry , Protein Transport
17.
BMC Plant Biol ; 18(1): 356, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558541

ABSTRACT

BACKGROUND: In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development. RESULTS: We analyzed the expression pattern of the proline biosynthetic genes PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 & 2 (P5CS1 & 2) in Arabidopsis anthers and both isoforms were strongly expressed in developing microspores and pollen grains but only inconsistently in surrounding sporophytic tissues. We introduced in a p5cs1/p5cs1 p5cs2/P5CS2 mutant background an additional copy of P5CS2 under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, the tapetum-specific LIPID TRANSFER PROTEIN 12 (Ltp12) promoter or the pollen-specific At5g17340 promoter to determine in which site proline biosynthesis can restore the fertility of proline-deficient microspores. The specificity of these promoters was confirmed by ß-glucuronidase (GUS) analysis, and by direct proline measurement in pollen grains and stage-9/10 anthers. Expression of P5CS2 under control of the At5g17340 promoter fully rescued proline content and normal morphology and fertility of mutant pollen. In contrast, expression of P5CS2 driven by either the Ltp12 or CaMV35S promoter caused only partial restoration of pollen development with little effect on pollen fertility. CONCLUSIONS: Overall, our results indicate that proline transport is not able to fulfill the demand of the cells of the male germ line. Pollen development and fertility depend on local proline biosynthesis during late stages of microspore development and in mature pollen grains.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Glutamate-5-Semialdehyde Dehydrogenase/genetics , Multienzyme Complexes/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pollen/growth & development , Pollen/genetics , Proline/biosynthesis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Fertility , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Glutamate-5-Semialdehyde Dehydrogenase/metabolism , Multienzyme Complexes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Spores/genetics
18.
Plants (Basel) ; 7(4)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563242

ABSTRACT

The capability of the soil bacterium Agrobacterium rhizogenes to reprogram plant development and induce adventitious hairy roots relies on the expression of a few root-inducing genes (rol A, B, C and D), which can be transferred from large virulence plasmids into the genome of susceptible plant cells. Contrary to rolA, B and C, which are present in all the virulent strains of A. rhizogenes and control hairy root formation by affecting auxin and cytokinin signalling, rolD appeared non-essential and not associated with plant hormones. Its role remained elusive until it was discovered that it codes for a proline synthesis enzyme. The finding that, in addition to its role in protein synthesis and stress adaptation, proline is also involved in hairy roots induction, disclosed a novel role for this amino acid in plant development. Indeed, from this initial finding, proline was shown to be critically involved in a number of developmental processes, such as floral transition, embryo development, pollen fertility and root elongation. In this review, we present a historical survey on the rol genes focusing on the role of rolD and proline in plant development.

20.
Am J Cardiol ; 119(7): 1088-1093, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28237287

ABSTRACT

There is limited evidence to support decision-making regarding discharge antiplatelet therapy after transcatheter aortic valve implantation (TAVI). The aim of this study was to assess the outcome of patients discharged on single-antiplatelet therapy (SAPT) or dual-antiplatelet therapy (DAPT) after TAVI. Consecutive patients were identified by retrospective review of a dedicated TAVI database of a single high-volume center in Milan, Italy, from January 2009 to May 2015. Our primary end point was the rate of net adverse clinical events defined as a composite of all-cause mortality, major bleeding requiring hospitalization, cerebrovascular accidents, redo-TAVI or surgical aortic valve replacement, and valve thrombosis. A total of 439 patients were included in the final analysis; 108 patients were discharged on SAPT and 331 on DAPT. Reasons for discharge SAPT included high risk of bleeding (n = 33; 31%), postprocedural bleeding (n = 42; 39%), thrombocytopenia (n = 20; 18%), vascular complications (n = 13; 12%). The mean length of DAPT was 5.2 ± 2.7 months. Patients discharged in SAPT had a higher incidence of life-threatening bleeding during the index hospitalization. At follow-up, no differences were observed in the incidence of net adverse clinical event, all-cause or cardiovascular mortality, and cerebrovascular events. A similar rate of valve thrombosis was reported in both groups. In conclusion, prescribing only SAPT after TAVI in selected patients was not associated with an increased risk of events and may be an acceptable alternative to DAPT in elderly patients at high risk of bleeding.


Subject(s)
Drug Therapy, Combination , Platelet Aggregation Inhibitors/therapeutic use , Transcatheter Aortic Valve Replacement , Aged, 80 and over , Contraindications , Dose-Response Relationship, Drug , Echocardiography , Female , Hemorrhage/epidemiology , Hemorrhage/prevention & control , Humans , Incidence , Italy/epidemiology , Male , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Retrospective Studies , Risk Assessment , Risk Factors , Thrombosis/epidemiology , Thrombosis/prevention & control , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...