Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(4): 1357-1372, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36074901

ABSTRACT

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Subject(s)
Epilepsy , Vacuolar Proton-Translocating ATPases , Humans , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Epilepsy/genetics , Adenosine Triphosphate
2.
Front Neurol ; 13: 918022, 2022.
Article in English | MEDLINE | ID: mdl-35911904

ABSTRACT

We report the genetic analysis of two consanguineous pedigrees of Pakistani ancestry in which two siblings in each family exhibited developmental delay, epilepsy, intellectual disability and aggressive behavior. Whole-genome sequencing was performed in Family 1, and we identified ~80,000 variants located in regions of homozygosity. Of these, 615 variants had a minor allele frequency ≤ 0.001, and 21 variants had CADD scores ≥ 15. Four homozygous exonic variants were identified in both affected siblings: PDZD7 (c.1348_1350delGAG, p.Glu450del), ALG6 (c.1033G>C, p.Glu345Gln), RBM20 (c.1587C>G, p.Ser529Arg), and CNTNAP2 (c.785G>A, p.Gly228Arg). Sanger sequencing revealed co-segregation of the PDZD7, RBM20, and CNTNAP2 variants with disease in Family 1. Pathogenic variants in PDZD7 and RBM20 are associated with autosomal recessive non-syndromic hearing loss and autosomal dominant dilated cardiomyopathy, respectively, suggesting that these variants are unlikely likely to contribute to the clinical presentation. Gene panel analysis was performed on the two affected siblings in Family 2, and they were found to also be homozygous for the p.Gly228Arg CNTNAP2 variant. Together these families provide a LOD score 2.9 toward p.Gly228Arg CNTNAP2 being a completely penetrant recessive cause of this disease. The clinical presentation of the affected siblings in both families is also consistent with previous reports from individuals with homozygous CNTNAP2 variants where at least one allele was a nonsense variant, frameshift or small deletion. Our data suggests that homozygous CNTNAP2 missense variants can also contribute to disease, thereby expanding the genetic landscape of CNTNAP2 dysfunction.

3.
Front Pharmacol ; 12: 748415, 2021.
Article in English | MEDLINE | ID: mdl-34867351

ABSTRACT

Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.

4.
Epilepsia ; 59(9): e135-e141, 2018 09.
Article in English | MEDLINE | ID: mdl-30132828

ABSTRACT

Previous reports have identified SLC6A1 variants in patients with generalized epilepsies, such as myoclonic-atonic epilepsy and childhood absence epilepsy. However, to date, none of the identified SLC6A1 variants has been functionally tested for an effect on GAT-1 transporter activity. The purpose of this study was to determine the incidence of SLC6A1 variants in 460 unselected epilepsy patients and to evaluate the impact of the identified variants on γ-aminobutyric acid (GABA)transport. Targeted resequencing was used to screen 460 unselected epilepsy patients for variants in SLC6A1. Five missense variants, one in-frame deletion, one nonsense variant, and one intronic splice-site variant were identified, representing a 1.7% diagnostic yield. Using a [3 H]-GABA transport assay, the seven identified exonic variants were found to reduce GABA transport activity. A minigene splicing assay revealed that the splice-site variant disrupted canonical splicing of exon 9 in the mRNA transcript, leading to premature protein truncation. These findings demonstrate that SLC6A1 is an important contributor to childhood epilepsy and that reduced GAT-1 function is a common consequence of epilepsy-causing SLC6A1 variants.


Subject(s)
Epilepsy/genetics , Epilepsy/metabolism , GABA Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation/genetics , Mutation/genetics , Cohort Studies , DNA Mutational Analysis , Female , GABA Plasma Membrane Transport Proteins/genetics , Genetic Predisposition to Disease/genetics , HEK293 Cells , HeLa Cells , Humans , Male , RNA, Messenger/metabolism , Transfection , Tritium/pharmacokinetics , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...