Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38545622

ABSTRACT

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS: ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.

2.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036525

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Subject(s)
Antibodies, Viral , SARS-CoV-2 , Humans , Animals , Mice , Epitopes , Immunodominant Epitopes , Peptides , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing
3.
J Virol ; 97(12): e0107023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38019013

ABSTRACT

IMPORTANCE: Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19 , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Article in English | MEDLINE | ID: mdl-37749254

ABSTRACT

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Cricetinae , Humans , Animals , Mice , Host Specificity , Pangolins , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Mice, Inbred BALB C
5.
J Virol ; 97(7): e0071523, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37310228

ABSTRACT

Powassan virus (POWV) is an emerging tick-borne flavivirus that causes neuroinvasive diseases, including encephalitis, meningitis, and paralysis. Similar to other neuroinvasive flaviviruses, such as West Nile virus (WNV) and Japanese encephalitis virus (JEV), POWV disease presentation is heterogeneous, and the factors influencing disease outcome are not fully understood. We used Collaborative Cross (CC) mice to assess the impact of host genetic factors on POWV pathogenesis. We infected a panel of Oas1b-null CC lines with POWV and observed a range of susceptibility, indicating that host factors other than the well-characterized flavivirus restriction factor Oas1b modulate POWV pathogenesis in CC mice. Among the Oas1b-null CC lines, we identified multiple highly susceptible lines (0% survival), including CC071 and CC015, and two resistant lines, CC045 and CC057 (>75% survival). The susceptibility phenotypes generally were concordant among neuroinvasive flaviviruses, although we did identify one line, CC006, that was specifically resistant to JEV, suggesting that both pan-flavivirus and virus-specific mechanisms contribute to susceptibility phenotypes in CC mice. We found that POWV replication was restricted in bone marrow-derived macrophages from CC045 and CC057 mice, suggesting that resistance could result from cell-intrinsic restriction of viral replication. Although serum viral loads at 2 days postinfection were equivalent between resistant and susceptible CC lines, clearance of POWV from the serum was significantly enhanced in CC045 mice. Furthermore, CC045 mice had significantly lower viral loads in the brain at 7 days postinfection than did CC071 mice, suggesting that reduced central nervous system (CNS) infection contributes to the resistant phenotype of CC045 mice. IMPORTANCE Neuroinvasive flaviviruses, such as WNV, JEV, and POWV, are transmitted to humans by mosquitoes or ticks and can cause neurologic diseases, such as encephalitis, meningitis, and paralysis, and they can result in death or long-term sequelae. Although potentially severe, neuroinvasive disease is a rare outcome of flavivirus infection. The factors that determine whether someone develops severe disease after a flavivirus infection are not fully understood, but host genetic differences in polymorphic antiviral response genes likely contribute to the outcome of infection. We evaluated a panel of genetically diverse mice and identified lines with distinct outcomes following infection with POWV. We found that resistance to POWV pathogenesis corresponded to reduced viral replication in macrophages, more rapid clearance of virus in peripheral tissues, and reduced viral infection in the brain. These susceptible and resistant mouse lines will provide a system for investigating the pathogenic mechanisms of POWV and identifying polymorphic host genes that contribute to resistance.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Tick-Borne , Encephalitis , Flavivirus Infections , Flavivirus , West Nile virus , Humans , Mice , Animals , Flavivirus/genetics , Collaborative Cross Mice , Flavivirus Infections/genetics , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Virus, Japanese/genetics , Disease Susceptibility , Paralysis , 2',5'-Oligoadenylate Synthetase/genetics
6.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-36909627

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.

7.
JAMA Netw Open ; 5(8): e2226335, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35947380

ABSTRACT

Importance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting. Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.S and the mRNA vaccine BNT162b2. Design, Setting, and Participants: In this cohort study at a single clinical site in Boston, Massachusetts, 68 individuals who were vaccinated at least 6 months previously with 2 immunizations of BNT162b2 were boosted with either Ad26.COV2.S or BNT162b2. Enrollment of participants occurred from August 12, 2021, to October 25, 2021, and this study involved 4 months of follow-up. Data analysis was performed from November 2021 to February 2022. Exposures: Participants who were previously vaccinated with BNT162b2 received a boost with either Ad26.COV2.S or BNT162b2. Main Outcomes and Measures: Humoral immune responses were assessed by neutralizing, binding, and functional antibody responses for 16 weeks following the boost. CD8+ and CD4+ T-cell responses were evaluated by intracellular cytokine staining assays. Results: Among 68 participants who were originally vaccinated with BNT162b2 and boosted with Ad26.COV2.S (41 participants; median [range] age, 36 [23-84] years) or BNT162b2 (27 participants; median [range] age, 35 [23-76] years), 56 participants (82%) were female, 7 (10%) were Asian, 4 (6%) were Black, 4 (6%) were Hispanic or Latino, 3 (4%) were more than 1 race, and 53 (78%) were White. Both vaccines were found to be associated with increased humoral and cellular immune responses, including against SARS-CoV-2 variants of concern. BNT162b2 boosting was associated with a rapid increase of Omicron neutralizing antibodies that peaked at a median (IQR) titer of 1018 (699-1646) at week 2 and declined by 6.9-fold to a median (IQR) titer of 148 (95-266) by week 16. Ad26.COV2.S boosting was associated with increased Omicron neutralizing antibodies titers that peaked at a median (IQR) of 859 (467-1838) week 4 and declined by 2.1-fold to a median (IQR) of 403 (208-1130) by week 16. Conclusions and Relevance: Heterologous Ad26.COV2.S boosting was associated with durable humoral and cellular immune responses in individuals who originally received the BNT162b2 vaccine. These data suggest potential benefits of heterologous prime-boost vaccine regimens for SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Adult , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
8.
Mol Cell ; 77(3): 542-555.e8, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31810760

ABSTRACT

The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.


Subject(s)
Adenosine/analogs & derivatives , Flaviviridae Infections/genetics , RNA, Messenger/genetics , Adenosine/genetics , Cell Line , Dengue/virology , Dengue Virus/genetics , Flaviviridae/genetics , Hepacivirus/genetics , Hepatitis C/virology , Host-Pathogen Interactions/genetics , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/genetics , Zika Virus/genetics , Zika Virus Infection/genetics
9.
PLoS Negl Trop Dis ; 12(1): e0006191, 2018 01.
Article in English | MEDLINE | ID: mdl-29309412

ABSTRACT

BACKGROUND: Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. METHODOLOGY/PRINCIPAL FINDINGS: We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. CONCLUSIONS/SIGNIFICANCE: Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody-Dependent Enhancement , Dengue Virus/immunology , Severe Dengue/prevention & control , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/immunology , Animals , Dengue Virus/genetics , Disease Models, Animal , Macaca , Mice , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serogroup , Severe Dengue/pathology , Survival Analysis , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/genetics
10.
Vaccine ; 32(32): 4068-74, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24882043

ABSTRACT

Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life.


Subject(s)
Dengue Vaccines/immunology , Dengue/prevention & control , Encephalitis Virus, Venezuelan Equine , Viral Envelope Proteins/immunology , Animals , Animals, Newborn , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Mice, Inbred BALB C , Neutralization Tests , Pregnancy , T-Lymphocytes/immunology
11.
J Virol ; 87(6): 3409-24, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23302884

ABSTRACT

Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.


Subject(s)
Dengue Vaccines/immunology , Dengue/prevention & control , Drug Carriers , Encephalitis Virus, Venezuelan Equine/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Disease Models, Animal , Genetic Vectors , Macaca , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viremia/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...