Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 127(42): 14681-91, 2005 Oct 26.
Article in English | MEDLINE | ID: mdl-16231922

ABSTRACT

Ce-doped borosilicate (BSG), phosphosilicate (PSG), and borophosphosilicate (BPSG) glasses (B:P:Si molar ratios 8:0:92, 0:8:92, and 8:8:84; Ce:Si molar ratio 1 x 10(-)(4) to 1 x 10(-)(2)) were prepared by the sol-gel method. High-resolution transmission electron microscopy (HRTEM), (31)P, (29)Si, and (11)B magic angle spinning nuclear magnetic resonance (MAS NMR), electron paramagnetic resonance (EPR), and UV-vis absorption investigations demonstrated that, in PSG and BPSG, Ce(3+) ions interact with phosphoryl, [O=PO(3/2)], metaphosphate, [O=PO(2/ 2)O](-), and pyrophosphate, [O=PO(1/2)O(2)](2)(-), groups, linked to a silica network. This inhibits both CeO(2) segregation and oxidation of isolated Ce(3+) ions to Ce(4+), up to Ce:Si = 5 x 10(-)(3). In BSG, neither trigonal [BO(3/2)] nor tetrahedral [BO(4/2)](-) boron units coordinate cerium; thus, Ce(3+) oxidation occurs even at Ce:Si = 1 x 10(-)(4), as in pure silica glass (SG). The homogeneous rare-earth dispersion in the host matrix and the stabilization of the Ce(3+) oxidation state enhanced the intensity of the photoluminescence emission in PSG and BPSG with respect to BSG and SG. The energy of the Ce(3+) emission band in PSG and BPSG matrixes agrees with the phosphate environment of the rare earth.


Subject(s)
Boron/chemistry , Cerium/chemistry , Glass/chemistry , Luminescent Agents/chemistry , Phosphorus/chemistry , Silicon Dioxide/chemistry , Absorption , Electron Spin Resonance Spectroscopy , Luminescent Measurements , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Particle Size , Surface Properties
2.
J Phys Chem B ; 109(15): 7195-202, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-16851821

ABSTRACT

The mechanism of NO interaction with nanosized Ru(Pd,Pt)-doped SnO(2) was studied by electron paramagnetic resonance, Mössbauer, and electric resistance measurements. Three steps were proposed for the reaction between the semiconductor oxide and the gaseous component: (i) the formation of bielectronic oxygen vacancies (V(o)) in SnO(2); (ii) their single-ionization (V(o)(*)) with injection of electrons into the SnO(2) conduction band; (iii) the subsequent transfer of electrons from V(o)(*) to [Ru(Pd,Pt)](4+). The last process induces the formation of further oxygen vacancies which reduce the transition metal centers to lower oxidation states; the redox processes is enhanced and the electrical resistance in transition metal-doped SnO(2) is stronger modified with respect to the undoped material.

SELECTION OF CITATIONS
SEARCH DETAIL
...