Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328254

ABSTRACT

Here we characterize a novel pan-RAS inhibitor, ADT-007, that potently and selectively inhibited the growth of histologically diverse cancer cell lines with mutant or activated RAS irrespective of the RAS mutation or isozyme. Growth inhibition was dependent on activated RAS and associated with reduced GTP-RAS levels and MAPK/AKT signaling. ADT-007 bound RAS in lysates from sensitive cells with sub-nanomolar EC 50 values but did not bind RAS in lysates from insensitive cells with low activated RAS. Insensitivity to ADT-007 was attributed to metabolic deactivation by UGT-mediated glucuronidation, providing a detoxification mechanism to protect normal cells from pan-RAS inhibition. Molecular modeling and experiments using recombinant RAS revealed that ADT-007 binds RAS in a nucleotide-free conformation to block GTP activation. Local injection of ADT-007 strongly inhibited tumor growth in syngeneic immune competent and xenogeneic immune deficient mouse models of colorectal and pancreatic cancer and activated innate and adaptive immunity in the tumor microenvironment. SIGNIFICANCE: ADT-007 is a novel pan-RAS inhibitor with a unique mechanism of action having potential to circumvent resistance to mutant-specific KRAS inhibitors and activate antitumor immunity. The findings support further development of ADT-007 analogs and/or prodrugs with oral bioavailability as a generalizable monotherapy or combined with immunotherapy for RAS mutant cancers. BACKGROUND: It is projected that colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDA) will cause 52,580 and 49,830 deaths in the US in 2023, respectively (1). The 5-year survival rates for CRC and PDA are 65% and 12%, respectively (1). Over 50% of CRC and 90% of PDA patients harbor mutations in KRAS genes that are associated with poor prognosis, making the development of novel KRAS inhibitors an urgent unmet medical need (2).

2.
JCO Precis Oncol ; 7: e2300088, 2023 09.
Article in English | MEDLINE | ID: mdl-37677121

ABSTRACT

PURPOSE: Recurrent gene mutations in speckle-type POZ protein (SPOP), the substrate-binding component of E3 ubiquitin ligase, are associated with tumor progression in prostate and endometrial cancers. Here, we characterized SPOP mutations in these cancers and explored their association with molecular and immune signatures and patient outcomes. METHODS: There were 7,398 prostate cancer and 19,188 endometrial cancer samples analyzed for clinical and molecular profiles at Caris Life Sciences. Overall survival (OS) was analyzed using Kaplan-Meier survival curves. Statistical significance was determined using chi-square and Mann-Whitney U tests, with P values adjusted for multiple comparisons. RESULTS: SPOP mutations were identified in 9.2% of prostate and 4.3% of endometrial cancers. Mutations clustered in the SPOP meprin and TRAF-C homology domain, with no significant overlap between cancer types. SPOP mutation was associated with differential comutation profiles and opposing tumor immune microenvironment signatures for each cancer, with greater immune infiltration in SPOP-mutated endometrial cancer. SPOP-mutated prostate and endometrial cancers displayed altered epigenetic gene expression, including opposite regulation of BRD2 transcripts. In SPOP-mutant prostate cancer, higher expression of androgen receptor-regulated transcripts and improved OS after treatment with hormonal agents were observed. In endometrial cancer, hormone receptor expression was significantly lower in SPOP-mutated tumors and differences in OS were highly dependent on the particular hotspot mutation and histologic subtype. CONCLUSION: These data indicate that SPOP mutations drive opposing molecular and immune landscapes in prostate and endometrial cancers-suggesting a loss-of-function mechanism in prostate cancer and gain-of-function mechanism in endometrial cancer-and provide a rationale for tailored therapeutic approaches.


Subject(s)
Endometrial Neoplasms , Prostatic Neoplasms , Male , Female , Humans , Prostate , Transcription Factors , Endometrial Neoplasms/genetics , Prostatic Neoplasms/genetics , Mutation/genetics , Tumor Microenvironment
3.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Article in English | MEDLINE | ID: mdl-34584001

ABSTRACT

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Carcinogenesis , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Mice , Phosphodiesterase Inhibitors/pharmacology , Sulindac/pharmacology
4.
MedComm (2020) ; 1(2): 121-128, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33073260

ABSTRACT

Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.

5.
Int J Mol Sci ; 21(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878223

ABSTRACT

Oncogenic mutations in RAS genes result in the elevation of cellular active RAS protein levels and increased signal propagation through downstream pathways that drive tumor cell proliferation and survival. These gain-of-function mutations drive over 30% of all human cancers, presenting promising therapeutic potential for RAS inhibitors. However, many have deemed RAS "undruggable" after nearly 40 years of failed drug discovery campaigns aimed at identifying a RAS inhibitor with clinical activity. Here we review RAS nucleotide cycling and the opportunities that RAS biochemistry presents for developing novel RAS inhibitory compounds. Additionally, compounds that have been identified to inhibit RAS by exploiting various aspects of RAS biology and biochemistry will be covered. Our current understanding of the biochemical properties of RAS, along with reports of direct-binding inhibitors, both provide insight on viable strategies for the discovery of novel clinical candidates with RAS inhibitory activity.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , ras Proteins/genetics , Animals , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
6.
J Exp Biol ; 219(Pt 7): 988-97, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27030777

ABSTRACT

To maximize reproductive success, many animal species have evolved functional sex change. Theory predicts that transitions between sexes should occur when the fitness payoff of the current sex is exceeded by the fitness payoff of the opposite sex. We examined phenotypic differences between the sexes in a sex-changing vertebrate, the mangrove rivulus fish (Kryptolebias marmoratus), to elucidate potential factors that might drive the 'decision' to switch sex. Rivulus populations consist of self-fertilizing hermaphrodites and males. Hermaphrodites transition into males under certain environmental conditions, affording us the opportunity to generate 40 hermaphrodite-male pairs where, within a pair, individuals possessed identical genotypes despite being different sexes. We quantified steroid hormone levels, behavior (aggression and risk taking), metabolism and morphology (organ masses). We found that hermaphrodites were more aggressive and risk averse, and had higher maximum metabolic rates and larger gonadosomatic indices. Males had higher steroid hormone levels and showed correlations among hormones that hermaphrodites lacked. Males also had greater total mass and somatic body mass and possessed considerable fat stores. Our findings suggest that there are major differences between the sexes in energy allocation, with hermaphrodites exhibiting elevated maximum metabolic rates, and showing evidence of favoring investments in reproductive tissues over somatic growth. Our study serves as the foundation for future research investigating how environmental challenges affect both physiology and reproductive investment and, ultimately, how these changes dictate the transition between sexes.


Subject(s)
Basal Metabolism/physiology , Cyprinodontiformes/physiology , Environment , Hermaphroditic Organisms/physiology , Self-Fertilization/physiology , Sex Characteristics , Aggression , Animals , Male , Risk-Taking , Sexual Behavior, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...