Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792074

ABSTRACT

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Subject(s)
Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
2.
Environ Pollut ; 334: 122142, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37414122

ABSTRACT

Dynamic Energy Budget theory (DEB) describes mass and energy fluxes that occur in living organisms. DEB models were successfully used to assess the influence of stress, including toxic substances, and changes in pH and temperature, on different organisms. In this study, the Standard DEB model was used to evaluate the toxicity of copper and cadmium ions and their binary mixtures on Daphnia magna. Both metal ions have a significant influence on daphnia growth and reproduction. Different physiological modes of action (pMoA) were applied to primary DEB model parameters. Model predictions for chosen modes of interaction of mixture components were evaluated. The goodness of model fit and the model prediction was assessed to indicate the most likely pMoA and interaction mode. Copper and cadmium influence more than one DEB model primary parameter. Different pMoAs can result in similar model fits, and therefore it is difficult to identify pMoA only by evaluation of the goodness of fit of the model to the growth and reproduction data. Some critical discussion and ideas for model development are therefore provided.


Subject(s)
Copper , Water Pollutants, Chemical , Animals , Copper/toxicity , Cadmium/toxicity , Daphnia , Temperature , Reproduction , Water Pollutants, Chemical/chemistry
3.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678579

ABSTRACT

The purpose of the investigation was to evaluate the effect of the selected bioflavonoids curcumin, resveratrol and baicalin on the wound healing process in an in vitro model. In the study, Balb3t3 and L929 cell lines were used. The first step was the evaluation of the cytotoxicity of the substances tested (MTT assay). Then, using the scratch test (ST), the influence of bioflavonoids on the healing process was evaluated in an in vitro model. The second stage of the work was a mathematical analysis of the results obtained. On the basis of experimental data, the parameters of the Brian and Cousens model were determined in order to determine the maximum value of the cellular and metabolic response that occurs for the examined range of concentrations of selected bioflavonoids. In the MTT assays, no cytotoxic effect of curcumin, resveratrol and baicalin was observed in selected concentrations, while in the ST tests for selected substances, a stimulatory effect was observed on the cell division rate regardless of the cell lines tested. The results obtained encourage further research on the use of substances of natural origin to support the wound healing process.

4.
Bioresour Technol ; 339: 125623, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34315088

ABSTRACT

The presence of heavy metals in the environment can lead to ecological and health problems. The evolution of biological systems, such as activated sludge, exposed to heavy metals is still underexplored. Therefore, this study sought to develop a model of microorganism activity and growth in activated sludge and used it to investigate the toxicity of five metals: Cu, Cd, Ni, Zn, and Ag. Patterns in the evolution of the toxic effects caused by these metals were similar at the beginning of exposure. Differences in toxicity between metal ions were noted for longer exposure times. Changes in model parameters indicate the influence of metal ions on the mass and energy balance of living cells. Decreases in new enzyme units and biomass production yields in contaminated activated sludge indicate a shift from anabolic reactions to metal homeostasis and resistance.


Subject(s)
Metals, Heavy , Sewage , Biomass , Metals, Heavy/toxicity
5.
Molecules ; 26(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466808

ABSTRACT

This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane's microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes' functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes' blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane's functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes' defined polymeric structure in a short and environmentally friendly process.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Solvents/chemistry , Staphylococcus aureus/drug effects , Thymol/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Membranes/chemistry , Membranes/drug effects , Thymol/chemistry
6.
Environ Pollut ; 264: 114740, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32416426

ABSTRACT

The presence of polystyrene (PS) waste increases constantly. Styrofoam, the most popular form of PS, is one of the major plastic pollutants in the environment. An efficient and environmentally friendly method of PS recycling is still needed. The biodegradation of PS by insects has been presented by researchers as a promising alternative to chemical, mechanical and thermal methods. The main aim of this study was to assess the survival, growth, and development of yellow mealworms (the larvae of Tenebrio molitor) fed with PS to determine if the insects are able to use PS as a source of mass and energy. The Dynamic Energy Budget (DEB) model was used to analyze the effects of food type on the growth trajectory and metabolism of tested organisms. We investigated five possible modes of influence of PS diet on DEB model parameters including a decrease of food availability, an increase in somatic maintenance power, an increase in costs for structure, allocation of energy, and a decrease in somatic maintenance power. Our results show that changes in the development of larvae fed with PS are mainly caused by a decrease in reserves density and reaction of the organism to the insufficient food supply. The inability or difficulty in completing the life cycle of T. molitor larvae fed with PS raises doubts about the use of mealworms as an effective technology for utilizing polystyrene.


Subject(s)
Tenebrio , Animals , Diet , Larva , Plastics , Polystyrenes
7.
Molecules ; 25(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164357

ABSTRACT

A series of hydrazide-hydrazones 1-3, the imine derivatives of hydrazides and aldehydes bearing benzene rings, were screened as inhibitors of laccase from Trametes versicolor. Laccase is a copper-containing enzyme which inhibition might prevent or reduce the activity of the plant pathogens that produce it in various biochemical processes. The kinetic and molecular modeling studies were performed and for selected compounds, the docking results were discussed. Seven 4-hydroxybenzhydrazide (4-HBAH) derivatives exhibited micromolar activity Ki = 24-674 µM with the predicted and desirable competitive type of inhibition. The structure-activity relationship (SAR) analysis revealed that a slim salicylic aldehyde framework had a pivotal role in stabilization of the molecules near the substrate docking site. Furthermore, the presence of phenyl and bulky tert-butyl substituents in position 3 in salicylic aldehyde fragment favored strong interaction with the substrate-binding pocket in laccase. Both 3- and 4-HBAH derivatives containing larger 3-tert-butyl-5-methyl- or 3,5-di-tert-butyl-2-hydroxy-benzylidene unit, did not bind to the active site of laccase and, interestingly, acted as non-competitive (Ki = 32.0 µM) or uncompetitive (Ki = 17.9 µM) inhibitors, respectively. From the easily available laccase inhibitors only sodium azide, harmful to environment and non-specific, was over 6 times more active than the above compounds.


Subject(s)
Hydrazones/chemistry , Hydrazones/pharmacology , Laccase/antagonists & inhibitors , Trametes/chemistry , Catalytic Domain , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Kinetics , Sodium Azide/chemistry , Structure-Activity Relationship
8.
Environ Toxicol Chem ; 39(2): 287-299, 2020 02.
Article in English | MEDLINE | ID: mdl-31610609

ABSTRACT

We evaluated the effect of copper oxide nanomaterials (CuO NMs), uncoated and with 3 different surface coatings (carboxylated, pegylated, and ammonia groups), on acute toxicity and accumulation dynamics in Daphnia magna. With the use of biodynamic modelling, biosorption and elimination rate constants were determined for D. magna following waterborne exposure to dissolved Cu and CuO NMs. The relationship between modeled parameters and acute toxicity endpoints was evaluated to investigate whether accumulation dynamics parameters could be used as a predictor of acute toxicity. The Langmuir equation was used to characterize the biosorption dynamics of Cu NMs and Cu chloride, used as dissolved Cu control. Uptake rates showed the following NM rankings: pristine-CuO > NH3 -CuO > aqueous Cu > polyethylene glycol (PEG)-CuO > COOH-CuO. To determine Cu elimination by D. magna, a one-compartment model was used. Different elimination rate constants were estimated for each chemical substance tested. Those that were easily biosorbed were also easily removed from organisms. Biosorption and depuration properties of NMs were correlated with zeta potential values and diameters of NM agglomerates in the suspensions. No link was found between biosorption and toxicity. Waterborne exposures to more difficult-to-biosorb CuO NMs were more likely to induce adverse effects than those that biosorbed easily. It is proposed that some physicochemical properties of NMs in media, including zeta potential and agglomerate diameter, can lead to higher biosorption but do not necessarily affect toxicity. The mode of interaction of the NMs with the organism seems to be complex and to depend on chemical speciation and physicochemical properties of the NMs inside an organism. Moreover, our findings highlight that coating type affects the biosorption dynamics, depuration kinetics, and dissolution rate of NMs in media. Environ Toxicol Chem 2020;39:287-299. © 2019 SETAC.


Subject(s)
Copper/toxicity , Daphnia/drug effects , Nanostructures/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bioaccumulation , Copper/metabolism , Daphnia/metabolism , Models, Biological , Nanostructures/chemistry , Solubility , Surface Properties , Water/chemistry , Water Pollutants, Chemical/metabolism
9.
Ecotoxicology ; 25(5): 924-39, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27021434

ABSTRACT

Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times.


Subject(s)
Models, Theoretical , Oxidoreductases/analysis , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...