Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728027

ABSTRACT

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Subject(s)
Gas Chromatography-Mass Spectrometry , Lipidomics , Gas Chromatography-Mass Spectrometry/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Flax/chemistry , Vegetables/chemistry , Mass Spectrometry/methods , Triglycerides/analysis , Triglycerides/chemistry
2.
iScience ; 26(9): 107697, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37694136

ABSTRACT

Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.

3.
J Steroid Biochem Mol Biol ; 232: 106349, 2023 09.
Article in English | MEDLINE | ID: mdl-37321512

ABSTRACT

Membrane contact sites (MCS) make up a crucial route of inter-organelle non-vesicular transport within the cell. Multiple proteins are involved in this process, which includes the ER-resident proteins vesicle associated membrane protein associated protein A and -B (VAPA/B) that form MCS between the ER and other membrane compartments. Currently most functional data on VAP depleted phenotypes have shown alterations in lipid homeostasis, induction of ER stress, dysfunction of UPR and autophagy, as well as neurodegeneration. Literature on concurrent silencing of VAPA/B is still sparse; therefore, we investigated how it affects the macromolecule pools of primary endothelial cells. Our transcriptomics results showed significant upregulation in genes related to inflammation, ER and Golgi dysfunction, ER stress, cell adhesion, as well as Coat Protein Complex-I and -II (COP-I, COP-II) vesicle transport. Genes related to cellular division were downregulated, as well as key genes of lipid and sterol biosynthesis. Lipidomics analyses revealed reductions in cholesteryl esters, very long chain highly unsaturated and saturated lipids, whereas increases in free cholesterol and relatively short chain unsaturated lipids were evident. Furthermore, the knockdown resulted in an inhibition of angiogenesis in vitro. We speculate that ER MCS depletion has led to multifaceted outcomes, which include elevated ER free cholesterol content and ER stress, alterations in lipid metabolism, ER-Golgi function and vesicle transport, which have led to a reduction in angiogenesis. The silencing also induced an inflammatory response, consistent with upregulation of markers of early atherogenesis. To conclude, ER MCS mediated by VAPA/B play a crucial role in maintaining cholesterol traffic and sustain normal endothelial functions.


Subject(s)
Endoplasmic Reticulum , Intracellular Membranes , Humans , Human Umbilical Vein Endothelial Cells , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Gene Knockdown Techniques , Metabolism , Neovascularization, Physiologic , Cholesterol/metabolism , Esterification , Lipidomics , Protein Interaction Maps , Golgi Apparatus/metabolism , Coat Protein Complex I/metabolism
4.
BMC Med ; 20(1): 500, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575453

ABSTRACT

BACKGROUND: Obesity and related co-morbidities represent a major health challenge nowadays, with a rapidly increasing incidence worldwide. The gut microbiome has recently emerged as a key modifier of human health that can affect the development and progression of obesity, largely due to its involvement in the regulation of food intake and metabolism. However, there are still few studies that have in-depth explored the functionality of the human gut microbiome in obesity and even fewer that have examined its relationship to eating behaviors. METHODS: In an attempt to advance our knowledge of the gut-microbiome-brain axis in the obese phenotype, we thoroughly characterized the gut microbiome signatures of obesity in a well-phenotyped Italian female cohort from the NeuroFAST and MyNewGut EU FP7 projects. Fecal samples were collected from 63 overweight/obese and 37 normal-weight women and analyzed via a multi-omics approach combining 16S rRNA amplicon sequencing, metagenomics, metatranscriptomics, and lipidomics. Associations with anthropometric, clinical, biochemical, and nutritional data were then sought, with particular attention to cognitive and behavioral domains of eating. RESULTS: We identified four compositional clusters of the gut microbiome in our cohort that, although not distinctly associated with weight status, correlated differently with eating habits and behaviors. These clusters also differed in functional features, i.e., transcriptional activity and fecal metabolites. In particular, obese women with uncontrolled eating behavior were mostly characterized by low-diversity microbial steady states, with few and poorly interconnected species (e.g., Ruminococcus torques and Bifidobacterium spp.), which exhibited low transcriptional activity, especially of genes involved in secondary bile acid biosynthesis and neuroendocrine signaling (i.e., production of neurotransmitters, indoles and ligands for cannabinoid receptors). Consistently, high amounts of primary bile acids as well as sterols were found in their feces. CONCLUSIONS: By finding peculiar gut microbiome profiles associated with eating patterns, we laid the foundation for elucidating gut-brain axis communication in the obese phenotype. Subject to confirmation of the hypotheses herein generated, our work could help guide the design of microbiome-based precision interventions, aimed at rewiring microbial networks to support a healthy diet-microbiome-gut-brain axis, thus counteracting obesity and related complications.


Subject(s)
Gastrointestinal Microbiome , Humans , Female , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Multiomics , Obesity/genetics , Diet , Feeding Behavior/physiology , Feces/microbiology
5.
Steroids ; 185: 109053, 2022 09.
Article in English | MEDLINE | ID: mdl-35623602

ABSTRACT

Oxysterol-binding protein (OSBP) is a cholesterol/PI4P exchanger at contacts of the endoplasmic reticulum (ER) with trans-Golgi network (TGN) and endosomes. Several central endothelial cell (EC) functions depend on adequate cholesterol distribution in cellular membranes. Here we elucidated the effects of pharmacologic OSBP inhibition on the lipidome and transcriptome of human umbilical vein endothelial cells (HUVECs). OSBP was inhibited for 24 h with 25 nM Schweinfurthin G (SWG) or Orsaponin (OSW-1), followed by analyses of cellular cholesterol, 27-hydroxy-cholesterol, and triacylglycerol concentration, phosphatidylserine synthesis rate, the lipidome, as well as lipid droplet staining and western analysis of OSBP protein. Next-generation RNA sequencing of the SWG-treated and control HUVECs and angiogenesis assays were performed. Protein-normalized lipidomes of the inhibitor-treated cells revealed decreases in glycerophospholipids, the most pronounced effect being on phosphatidylserines and the rate of their synthesis, as well as increases in cholesteryl esters, triacylglycerols and lipid droplet number. Transcriptome analysis of SWG-treated cells suggested ER stress responses apparently caused by disturbed cholesterol exit from the ER, as indicated by suppression of cholesterol biosynthetic genes. OSBP was associated with the TGN in the absence of inhibitors and disappeared therefrom in inhibitor-treated cells in a time-dependent manner, coinciding with OSBP reduction on western blots. Prolonged treatment with SWG or OSW-1 inhibited angiogenesis in vitro. To conclude, inhibition of OSBP in primary endothelial cells induced multiple effects on the lipidome, transcriptome changes suggesting ER stress, and disruption of in vitro angiogenic capacity. Thus, OSBP is a crucial regulator of EC lipid homeostasis and angiogenic capacity.


Subject(s)
Receptors, Steroid , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Receptors, Steroid/metabolism
6.
Br J Pharmacol ; 178(16): 3342-3353, 2021 08.
Article in English | MEDLINE | ID: mdl-33751575

ABSTRACT

BACKGROUND AND PURPOSE: The analysis of human faecal metabolites can provide an insight into metabolic interactions between gut microbiota and the host organism. The creation of metabolic profiles in faeces has received little attention until now, and reference values, especially in the context of dietary and therapeutic interventions, are missing. Exposure to xenobiotics significantly affects the physiology of the microbiome, and microbiota manipulation and short-chain fatty acid administration have been proposed as treatment targets for several diseases. The aim of the present study is to give concomitant concentration ranges of faecal sterol species, bile acids and short-chain fatty acids, based on a large cohort. EXPERIMENTAL APPROACH: Sterol species, bile acids and short-chain fatty acids in human faeces from 165 study participants were quantified by LC-MS/MS. For standardization, we refer all values to dry weight of faeces. Based on the individual intestinal sterol conversion, we classified participants into low and high converters according to their coprostanol/cholesterol ratio. KEY RESULTS: Low converters excrete more straight-chain fatty acids and bile acids than high converters; 5th and 95th percentile and median of bile acids and short-chain fatty acids were calculated for both groups. CONCLUSION AND IMPLICATIONS: We give concentration ranges for 16 faecal metabolites that can serve as reference values. Patient stratification into high or low sterol converter groups is associated with significant differences in faecal metabolites with biological activities. Such stratification should then allow better assessment of faecal metabolites before therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Subject(s)
Bile Acids and Salts , Tandem Mass Spectrometry , Cholesterol , Chromatography, Liquid , Fatty Acids, Volatile , Feces , Humans
7.
PLoS Biol ; 18(12): e3000948, 2020 12.
Article in English | MEDLINE | ID: mdl-33284790

ABSTRACT

Chronic inflammation is now a well-known precursor for cancer development. Infectious prostatitis are the most common causes of prostate inflammation, but emerging evidence points the role of metabolic disorders as a potential source of cancer-related inflammation. Although the widely used treatment for prostate cancer based on androgen deprivation therapy (ADT) effectively decreases tumor size, it also causes profound alterations in immune tumor microenvironment within the prostate. Here, we demonstrate that prostates of a mouse model invalidated for nuclear receptors liver X receptors (LXRs), crucial lipid metabolism and inflammation integrators, respond in an unexpected way to androgen deprivation. Indeed, we observed profound alterations in immune cells composition, which was associated with chronic inflammation of the prostate. This was explained by the recruitment of phagocytosis-deficient macrophages leading to aberrant hyporesponse to castration. This phenotypic alteration was sufficient to allow prostatic neoplasia. Altogether, these data suggest that ADT and inflammation resulting from metabolic alterations interact to promote aberrant proliferation of epithelial prostate cells and development of neoplasia. This raises the question of the benefit of ADT for patients with metabolic disorders.


Subject(s)
Immunity/physiology , Liver X Receptors/metabolism , Prostate/metabolism , Androgen Antagonists/immunology , Androgens/metabolism , Animals , Disease Models, Animal , Immunity/immunology , Liver X Receptors/genetics , Liver X Receptors/immunology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neoplasms/etiology , Neoplasms/immunology , Neoplasms/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Microenvironment
8.
Clin Nutr ; 39(1): 67-79, 2020 01.
Article in English | MEDLINE | ID: mdl-30827722

ABSTRACT

BACKGROUND & AIMS: Gut microbiota composition is linked to obesity and metabolic syndrome. The nutrients and doses required to modulate the gut microbiota towards beneficially influence components of the metabolic syndrome are unclear. This study aimed to investigate diet-induced effects on the gut microbiota and metabolic markers in overweight individuals with indices of the metabolic syndrome. METHODS: A twelve-week randomized cross-over trial was conducted with two intervention periods separated by a washout period. The dietary intakes of interest were wheat bran extract, rich in arabinoxylan oligosaccharides (AXOS) (10.4 g/d AXOS) and polyunsaturated fatty acids (PUFA) (3.6 g/d n-3 PUFA). Dietary records, fecal and blood samples, as well as anthropometric data, were collected before and after intervention. Anthropometry and gastrointestinal symptoms were evaluated weekly. Gut microbiota composition was analyzed by massive sequencing of 16S ribosomal RNA gene V3V4 amplicons. RESULTS: Twenty-seven participants completed the study (90%). Intake of AXOS induced an expected bifidogenic effect on gut microbiota (p < 0.01) and increased butyrate-producing bacterial species as well (p < 0.05). Beta-diversity analysis indicated that the structure of the gut microbiota only changed as a result of the AXOS intervention (Permanova = 1.90, p < 0.02) and no changes in metabolic markers were observed after any of the interventions. CONCLUSIONS: AXOS intake has a bifidogenic effect and also increases butyrate producers in the gut microbiota; even though this type of dietary fiber did not modulate lipid or glucose metabolic parameters related to metabolic syndrome. Four-week PUFA intake did not induce any notable effect on the gut microbiota composition or metabolic risk markers. REGISTRATION: Registered under ClinicalTrials.gov Identifier no. NCT02215343. CLINICAL TRIAL REGISTRATION: Registered at https://www.clinicaltrials.gov/ (NCT02215343). ETHICAL COMMITTEE: H-4-2014-052. THE DANISH DATA PROTECTION AGENCY: 2013-54-0522.


Subject(s)
Dietary Fiber/pharmacology , Fatty Acids, Unsaturated/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolic Syndrome/metabolism , Overweight/metabolism , Xylans/pharmacology , Adolescent , Adult , Cross-Over Studies , Diet/methods , Female , Humans , Male , Metabolic Syndrome/microbiology , Middle Aged , Oligosaccharides , Overweight/microbiology , Young Adult
9.
mSystems ; 4(4)2019 May 28.
Article in English | MEDLINE | ID: mdl-31138673

ABSTRACT

Long-term consumption of dietary fiber is generally considered beneficial for weight management and metabolic health, but the results of interventions vary greatly depending on the type of dietary fibers involved. This study provides a comprehensive evaluation of the effects of a specific dietary fiber consisting of a wheat-bran extract enriched in arabinoxylan-oligosaccharides (AXOS) in a human intervention trial. An integrated multi-omics analysis has been carried out to evaluate the effects of an intervention trial with an AXOS-enriched diet in overweight individuals with indices of metabolic syndrome. Microbiome analyses were performed by shotgun DNA sequencing in feces; in-depth metabolomics using nuclear magnetic resonance in fecal, urine, and plasma samples; and massive lipid profiling using mass spectrometry in fecal and serum/plasma samples. In addition to their bifidogenic effect, we observed that AXOS boost the proportion of Prevotella species. Metagenome analysis showed increases in the presence of bacterial genes involved in vitamin/cofactor production, glycan metabolism, and neurotransmitter biosynthesis as a result of AXOS intake. Furthermore, lipidomics analysis revealed reductions in plasma ceramide levels. Finally, we observed associations between Prevotella abundance and short-chain fatty acids (SCFAs) and succinate concentration in feces and identified a potential protective role of Eubacterium rectale against metabolic disease given that its abundance was positively associated with plasma phosphatidylcholine levels, thus hypothetically reducing bioavailability of choline for methylamine biosynthesis. The metagenomics, lipidomics, and metabolomics data integration indicates that sustained consumption of AXOS orchestrates a wide variety of changes in the gut microbiome and the host metabolism that collectively would impact on glucose homeostasis. (This study has been registered at ClinicalTrials.gov under identifier NCT02215343)IMPORTANCE The use of dietary fiber food supplementation as a strategy to reduce the burden of diet-related diseases is a matter of study given its cost-effectiveness and the positive results demonstrated in clinical trials. This multi-omics assessment, on different biological samples of overweight subjects with signs of metabolic syndrome, sheds light on the early and less evident effects of short-term AXOS intake on intestinal microbiota and host metabolism. We observed a deep influence of AXOS on gut microbiota beyond their recognized bifidogenic effect by boosting concomitantly a wide diversity of butyrate producers and Prevotella copri, a microbial species abundant in non-Westernized populations with traditional lifestyle and diets enriched in fresh unprocessed foods. A comprehensive evaluation of hundreds of metabolites unveiled new benefits of the AXOS intake, such as reducing the plasma ceramide levels. Globally, we observed that multiple effects of AXOS consumption seem to converge in reversing the glucose homeostasis impairment.

10.
J Steroid Biochem Mol Biol ; 190: 115-125, 2019 06.
Article in English | MEDLINE | ID: mdl-30940596

ABSTRACT

Serum concentrations of lathosterol, the plant sterols campesterol and sitosterol and the cholesterol metabolite 5α-cholestanol are widely used as surrogate markers of cholesterol synthesis and absorption, respectively. Increasing numbers of laboratories utilize a broad spectrum of well-established and recently developed methods for the determination of cholesterol and non-cholesterol sterols (NCS). In order to evaluate the quality of these measurements and to identify possible sources of analytical errors our group initiated the first international survey for cholesterol and NCS. The cholesterol and NCS survey was structured as a two-part survey which took place in the years 2013 and 2014. The first survey part was designed as descriptive, providing information about the variation of reported results from different laboratories. A set of two lyophilized pooled sera (A and B) was sent to twenty laboratories specialized in chromatographic lipid analysis. The different sterols were quantified either by gas chromatography-flame ionization detection, gas chromatography- or liquid chromatography-mass selective detection. The participants were requested to determine cholesterol and NCS concentrations in the provided samples as part of their normal laboratory routine. The second part was designed as interventional survey. Twenty-two laboratories agreed to participate and received again two different lyophilized pooled sera (C and D). In contrast to the first international survey, each participant received standard stock solutions with defined concentrations of cholesterol and NCS. The participants were requested to use diluted calibration solutions from the provided standard stock solutions for quantification of cholesterol and NCS. In both surveys, each laboratory used its own internal standard (5α-cholestane, epicoprostanol or deuterium labelled sterols). Main outcome of the survey was, that unacceptably high interlaboratory variations for cholesterol and NCS concentrations are reported, even when the individual laboratories used the same calibration material. We discuss different sources of errors and recommend all laboratories analysing cholesterol and NCS to participate in regular quality control programs.


Subject(s)
Cholesterol/blood , Phytosterols/blood , Cholestanol/blood , Cholesterol/analogs & derivatives , Chromatography, Gas/methods , Chromatography, Liquid/methods , Humans , Sitosterols/blood , Surveys and Questionnaires
11.
J Steroid Biochem Mol Biol ; 190: 99-103, 2019 06.
Article in English | MEDLINE | ID: mdl-30923016

ABSTRACT

The human gut microbiome plays a crucial role in both health and disease. Metabolites in human faeces related to microbial activity might therefore be attractive surrogate markers to track changes of microbiota induced by diet or disease. The hyphenation of gas chromatography with triple quadrupole mass spectrometry is a promising approach to increase sensitivity and selectivity as compared to single quad MS instruments. The versatility of gas chromatography-tandem mass spectrometry (GC-MS/MS) can be advantageously exploited in clinical laboratory medicine, e.g. for quantification of sterols in biological material. In this paper, we present the application of GC-MS/MS for determination of sterol components in human faeces. A serious problem of analysis of faeces is preanalytics. Uncontrolled degradation of metabolites during transport and storage of faeces before entering the clinical laboratory might occur. In our experiments we did not observe any increasing or decreasing concentration after storage of native faeces material even at room temperature. Furthermore, we answer the question of how personal metabolic responses with respect to sterols are and address the importance of sampling strategies. From a pilot study it is concluded that differentiation between high and low metabolizers is independent of the type of sampling and constant over several days.


Subject(s)
Feces/chemistry , Sterols/analysis , Gas Chromatography-Mass Spectrometry/methods , Gastrointestinal Microbiome , Humans , Tandem Mass Spectrometry/methods
12.
Biomolecules ; 9(4)2019 03 28.
Article in English | MEDLINE | ID: mdl-30925749

ABSTRACT

Short chain fatty acids (SCFAs) are generated by the degradation and fermentation of complex carbohydrates, (i.e., dietary fiber) by the gut microbiota relevant for microbe⁻host communication. Here, we present a method for the quantification of SCFAs in fecal samples by liquid chromatography tandem mass spectrometry (LC-MS/MS) upon derivatization to 3-nitrophenylhydrazones (3NPH). The method includes acetate, propionate, butyrate, and isobutyrate with a run time of 4 min. The reproducible (coefficients of variation (CV) below 10%) quantification of SCFAs in human fecal samples was achieved by the application of stable isotope labelled internal standards. The specificity was demonstrated by the introduction of a quantifier and qualifier ions. The method was applied to investigate the pre-analytic stability of SCFAs in human feces. Concentrations of SCFA may change substantially within hours; the degree and kinetics of these changes revealed huge differences between the donors. The fecal SCFA level could be preserved by the addition of organic solvents like isopropanol. An analysis of the colon content of mice either treated with antibiotics or fed with a diet containing a non-degradable and -fermentable fiber source showed decreased SCFA concentrations. In summary, this fast and reproducible method for the quantification of SCFA in fecal samples provides a valuable tool for both basic research and large-scale studies.


Subject(s)
Fatty Acids, Volatile/analysis , Animals , Chromatography, Liquid , Humans , Mice , Mice, Inbred C57BL , Quality Control , Tandem Mass Spectrometry
13.
Biochimie ; 153: 26-32, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30063945

ABSTRACT

Increasing numbers of laboratories develop new methods based on gas-liquid and high-performance liquid chromatography to determine serum concentrations of oxygenated cholesterol metabolites such as 7α-, 24(S)-, and 27-hydroxycholesterol. We initiated a first international descriptive oxycholesterol (OCS) survey in 2013 and a second interventional survey 2014 in order to compare levels of OCS reported by different laboratories and to define possible sources of analytical errors. In 2013 a set of two lyophilized serum pools (A and B) was sent to nine laboratories in different countries for OCS measurement utilizing their own standard stock solutions. In 2014 eleven laboratories were requested to determine OCS concentrations in lyophilized pooled sera (C and D) utilizing the same provided standard stock solutions of OCS. The participating laboratories submitted results obtained after capillary gas-liquid chromatography-mass selective detection with either epicoprostanol or deuterium labelled sterols as internal standards and high-performance liquid chromatography with mass selective detection and deuterated OCS as internal standard. Each participant received a clear overview of the results in form of Youden-Plots and basic statistical evaluation in its used unit. The coefficients of variation of the concentrations obtained by all laboratories using their individual methods were 58.5-73.3% (survey 1), 56.8-60.3% (survey 2); 36.2-35.8% (survey 1), 56.6-59.8, (survey 2); 61.1-197.7% (survey 1), 47.2-74.2% (survey 2) for 24(S)-, 27-, and 7α-hydroxycholesterol, respectively. We are surprised by the very great differences between the laboratories, even under conditions when the same standards were used. The values of OCS's must be evaluated in relation to the analytical technique used, the efficiency of the ample separation and the nature of the internal standard used. Quantification of the calibration solution and inappropriate internal standards could be identified as major causes for the high variance in the reported results from the different laboratories. A harmonisation of analytical standard methods is highly needed.


Subject(s)
Cholesterol/analysis , Chromatography, Gas/methods , Chromatography, Liquid/methods , Cholesterol/standards , Humans , Reference Standards , Surveys and Questionnaires
14.
Anal Chem ; 90(14): 8487-8494, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29920210

ABSTRACT

There has been an increasing interest during recent years in the role of the gut microbiome on health and disease. Therefore, metabolites in human feces related to microbial activity are attractive surrogate marker to track changes of microbiota induced by diet or disease. Such markers include 5α/ß-stanols as microbiome-derived metabolites of sterols. Currently, reliable, robust, and fast methods to quantify fecal sterols and their related metabolites are missing. We developed a liquid chromatography-high-resolution mass spectrometry (LC-MS/HRMS) method for the quantification of sterols and their 5α/ß-stanols in human fecal samples. Fecal sterols were extracted and derivatized to N, N-dimethylglycine esters. The method includes cholesterol, coprostanol, cholestanol and sitosterol, 5α/ß-sitostanol, campesterol and 5α/ß-campestanol. Application of a biphenyl column permits separation of isomeric 5α- and 5ß-stanols. Sterols are detected in parallel reaction monitoring (PRM) mode and stanols in full scan mode. HRMS allows differentiation of isobaric ß-stanols and the [M + 2] isotope peak of the coeluting sterol. Performance characteristics meet the criteria recommended by Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. Analysis of fecal samples from healthy volunteers revealed high interindividual variability of sterol and stanol fractions. Interestingly, cholesterol and sitosterol showed similar fractions of mainly 5ß-stanols. In contrast, campesterol is substantially converted to 5α-campestanol and might be a poorer substrate for bacterial metabolism. Robust and fast quantification of fecal sterols and their related stanols by LC-MS/HRMS offers great potential to find novel microbiome-related biomarker in large-scale studies.


Subject(s)
Feces/chemistry , Gastrointestinal Microbiome , Sterols/analysis , Tandem Mass Spectrometry/methods , Cholesterol/analogs & derivatives , Cholesterol/analysis , Chromatography, Liquid/economics , Chromatography, Liquid/methods , Feces/microbiology , Humans , Limit of Detection , Phytosterols/analysis , Sitosterols/analysis , Tandem Mass Spectrometry/economics
15.
Cell Mol Life Sci ; 75(21): 4041-4057, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29947926

ABSTRACT

ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)-lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3ß(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER-LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER-LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281-1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.


Subject(s)
Biological Transport/genetics , Energy Metabolism/genetics , Proto-Oncogene Proteins c-akt/genetics , Receptors, Steroid/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Cell Cycle Proteins/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Chaperonins/genetics , Gene Knockout Techniques , HSP90 Heat-Shock Proteins , Humans , Lipid Metabolism/genetics , Organelles/genetics , Organelles/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , Signal Transduction/genetics
16.
Nutr Diabetes ; 8(1): 11, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29549243

ABSTRACT

Bile acids (BA) are potent metabolic regulators influenced by diet. We studied effects of isoenergetic increases in the dietary protein and cereal-fiber contents on circulating BA and insulin resistance (IR) in overweight and obese adults. Randomized controlled nutritional intervention (18 weeks) in 72 non-diabetic participants (overweight/obese: 29/43) with at least one further metabolic risk factor. Participants were group-matched and allocated to four isoenergetic supplemented diets: control; high cereal fiber (HCF); high-protein (HP); or moderately increased cereal fiber and protein (MIX). Whole-body IR and insulin-mediated suppression of hepatic endogenous glucose production were measured using euglycaemic-hyperinsulinemic clamps with [6-62H2] glucose infusion. Circulating BA, metabolic biomarkers, and IR were measured at 0, 6, and 18 weeks. Under isoenergetic conditions, HP-intake worsened IR in obese participants after 6 weeks (M-value: 3.77 ± 0.58 vs. 3.07 ± 0.44 mg/kg/min, p = 0.038), with partial improvement back to baseline levels after 18 weeks (3.25 ± 0.45 mg/kg/min, p = 0.089). No deleterious effects of HP-intake on IR were observed in overweight participants. HCF-diet improved IR in overweight participants after 6 weeks (M-value 4.25 ± 0.35 vs. 4.81 ± 0.31 mg/kg/min, p = 0.016), but did not influence IR in obese participants. Control and MIX diets did not influence IR. HP-induced, but not HCF-induced changes in IR strongly correlated with changes of BA profiles. MIX-diet significantly increased most BA at 18 weeks in obese, but not in overweight participants. BA remained unchanged in controls. Pooled BA concentrations correlated with fasting fibroblast growth factor-19 (FGF-19) plasma levels (r = 0.37; p = 0.003). Higher milk protein intake was the only significant dietary predictor for raised total and primary BA in regression analyses (total BA, p = 0.017; primary BA, p = 0.011). Combined increased intake of dietary protein and cereal fibers markedly increased serum BA concentrations in obese, but not in overweight participants. Possible mechanisms explaining this effect may include compensatory increases of the BA pool in the insulin resistant, obese state; or defective BA transport.


Subject(s)
Bile Acids and Salts/blood , Body Mass Index , Diet , Dietary Fiber/pharmacology , Dietary Proteins/pharmacology , Insulin Resistance , Obesity/blood , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Edible Grain , Energy Intake , Fasting , Female , Fibroblast Growth Factors/blood , Glucose Clamp Technique , Humans , Insulin/blood , Liver/drug effects , Liver/metabolism , Male , Middle Aged , Milk Proteins/administration & dosage , Milk Proteins/pharmacology , Obesity/complications , Overweight
17.
J Chromatogr A ; 1526: 112-118, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29061472

ABSTRACT

A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules.


Subject(s)
Blood Chemical Analysis/methods , Chromatography, Liquid , Steroids/blood , Tandem Mass Spectrometry , Humans , Limit of Detection , Liquid-Liquid Extraction , Reproducibility of Results , Steroids/isolation & purification
18.
J Chromatogr A ; 1439: 82-88, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26607314

ABSTRACT

Oxysterols are important intermediates in numerous metabolic and catabolic pathways and their biological significance is also proven. The present paper describes a reliable and short liquid chromatography-high-resolution mass spectrometry method (LC-MS/HR-MS) for the quantification of 8 different oxysterols (24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 4ß-hydroxycholesterol, 7α-hydroxycholesterol, 7ß-hydroxycholesterol, 7-ketocholesterol and cholestan-3ß,5α,6ß-triol) in human plasma and red blood cells. Oxysterols were extracted with iso-octane after saponification of esterified sterols. Due to the poor ionization efficiency of the target compounds in electrospray ionization (ESI) derivatization of the molecules has been performed with N,N-dimethylglycine (DMG). Within less than 8 min we were able to achieve baseline separation of the isobaric 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 4ß-hydroxycholesterol, 7α-hydroxycholesterol and 7ß-hydroxycholesterol. Moreover, high mass resolution was advantageously applied to resolve quasi-isobaric interferences. The method was validated based on the recommendations of US Food and Drug Administration and the European Medicines Agency guidelines. Oxysterol concentrations were determined in human plasma and red blood cells from healthy volunteers. Furthermore, the applicability for clinical use has been proven by the analysis of oxysterols as biomarkers in Niemann-Pick type C or cerebrotendinous xanthomatosis patients.


Subject(s)
Erythrocytes/chemistry , Hydroxycholesterols/blood , Biomarkers/blood , Chromatography, Liquid/methods , Humans , Ketocholesterols/blood , Niemann-Pick Disease, Type C/blood , Plasma , Stereoisomerism , Tandem Mass Spectrometry/methods , Xanthomatosis, Cerebrotendinous/blood
19.
Endocrinology ; 156(11): 3895-908, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26305886

ABSTRACT

Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Mitotane/pharmacology , Sterol O-Acyltransferase/antagonists & inhibitors , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Disease-Free Survival , Endoplasmic Reticulum Stress/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Immunoblotting , Immunohistochemistry , Lipids/analysis , Mitotane/therapeutic use , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transcriptome/drug effects
20.
J Lipid Res ; 56(6): 1234-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25833687

ABSTRACT

In general, mass spectrometric quantification of small molecules in routine laboratory testing utilizes liquid chromatography coupled to low mass resolution triple-quadrupole mass spectrometers (QQQs). Here we introduce high-resolution tandem mass spectrometry (quadrupole-Orbitrap) for the quantification of 25-hydroxy-vitamin D [25(OH)D], a marker of the vitamin D status, because the specificity of 25(OH)D immunoassays is still questionable and mass spectrometric quantification is becoming increasingly important. Liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/HR-MS) was used to quantify 25-hydroxy-cholecalciferol [25(OH)D3], 25-hydroxy-ergocalciferol [25(OH)D2], and their C3-epimers 3-epi-25(OH)D3 and 3-epi-25(OH)D2. The method has a run time of 5 min and was validated according to the US Food and Drug Administration and the European Medicines Agency guidelines. High mass resolution was advantageously applied to separate a quasi-isobaric interference of the internal standard D6-25(OH)D2 with 3-epi-25(OH)D3. All analytes showed an imprecision of below 10% coefficient of variation (CV), trueness between 90% and 110%, and limits of quantification below 10 nM. Concentrations measured by LC-MS/HR-MS are in good agreement with those of the National Institute of Standards and Technology reference methods using LC-MS/MS (QQQ). In conclusion, quantification of 25(OH)D by LC-MS/HR-MS is applicable for routine testing and also holds promise for highly specific quantification of other small molecules.


Subject(s)
Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Humans , United States , Vitamin D/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...