Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072604

ABSTRACT

Zika virus (ZIKV), a member of the Flaviviridae family, is an important human pathogen that has caused epidemics in Africa, Southeast Asia, and the Americas. No licensed treatments for ZIKV disease are currently available. Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and ribavirin (1-(ß-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide) are nucleoside analogs that have exhibited antiviral activity against a broad spectrum of RNA viruses, including some flaviviruses. In this study, we strengthened evidence for favipiravir and ribavirin inhibition of ZIKV replication in vitro. Testing in IFNAR-/- mice revealed that daily treatments of favipiravir were sufficient to provide protection against lethal ZIKV challenge in a dose-dependent manner but did not completely abrogate disease. Ribavirin, on the other hand, had no beneficial effect against ZIKV infection in this model and under the conditions examined. Combined treatment of ribavirin and favipiravir did not show improved outcomes over ribavirin alone. Surprisingly, outcome of favipiravir treatment was sex-dependent, with 87% of female but only 25% of male mice surviving lethal ZIKV infection. Since virus mutations were not associated with outcome, a sex-specific host response likely explains the observed sex difference.

2.
Expert Rev Vaccines ; 18(12): 1229-1242, 2019 12.
Article in English | MEDLINE | ID: mdl-31779496

ABSTRACT

Introduction: Ebolaviruses are non-segmented negative-strand RNA viruses in the Filoviridae family that cause a neglected infectious disease designated as Ebola virus disease (EVD). The most prominent member is the Ebola virus (EBOV), representing the Zaire ebolavirus species that has been responsible for the largest reported EVD outbreaks including the West African epidemic and the current outbreak in the Democratic Republic of the Congo. Today, the most advanced EVD vaccine approaches target EBOV and multiple phase 1-4 human trials have been performed over the past few years. The most advanced platforms include vectored vaccines based on vesicular stomatitis virus (VSV-EBOV), distinct human (Ad5 and Ad26) and chimpanzee (ChAd3) adenoviruses and modified vaccinia Ankara (MVA) as well as DNA-based vaccines administered as a prime-only or homologous or combined prime-boost immunization.Areas covered: Here, we review and discuss human trials with a focus on vaccine safety and immunogenicity.Expert opinion: Despite obvious progress and promising success in EBOV vaccine development, many shortcomings and challenges remain to be tackled in the future.


Subject(s)
Ebola Vaccines/adverse effects , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adenoviridae/genetics , Clinical Trials as Topic , Drug Carriers , Ebola Vaccines/administration & dosage , Genetic Vectors , Humans , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Vesiculovirus/genetics
3.
mSystems ; 4(5)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31551400

ABSTRACT

Classified as a biosafety level 4 (BSL4) select agent, Nipah virus (NiV) is a deadly henipavirus in the Paramyxoviridae family, with a nearly 75% mortality rate in humans, underscoring its global and animal health importance. Elucidating the process of viral particle production in host cells is imperative both for targeted drug design and viral particle-based vaccine development. However, little is understood concerning the functions of cellular machinery in paramyxoviral and henipaviral assembly and budding. Recent studies showed evidence for the involvement of multiple NiV proteins in viral particle formation, in contrast to the mechanisms understood for several paramyxoviruses as being reliant on the matrix (M) protein alone. Further, the levels and purposes of cellular factor incorporation into viral particles are largely unexplored for the paramyxoviruses. To better understand the involvement of cellular machinery and the major structural viral fusion (F), attachment (G), and matrix (M) proteins, we performed proteomics analyses on virus-like particles (VLPs) produced from several combinations of these NiV proteins. Our findings indicate that NiV VLPs incorporate vesicular trafficking and actin cytoskeletal factors. The involvement of these biological processes was validated by experiments indicating that the perturbation of key factors in these cellular processes substantially modulated viral particle formation. These effects were most impacted for NiV-F-modulated viral particle formation either autonomously or in combination with other NiV proteins, indicating that NiV-F budding relies heavily on these cellular processes. These findings indicate a significant involvement of the NiV fusion protein, vesicular trafficking, and actin cytoskeletal processes in efficient viral particle formation.IMPORTANCE Nipah virus is a zoonotic biosafety level 4 agent with high mortality rates in humans. The genus to which Nipah virus belongs, Henipavirus, includes five officially recognized pathogens; however, over 20 species have been identified in multiple continents within the last several years. As there are still no vaccines or treatments for NiV infection, elucidating its process of viral particle production is imperative both for targeted drug design as well as for particle-based vaccine development. Developments in high-throughput technologies make proteomic analysis of isolated viral particles a highly insightful approach to understanding the life cycle of pathogens such as Nipah virus.

4.
Int Rev Cell Mol Biol ; 345: 35-136, 2019.
Article in English | MEDLINE | ID: mdl-30904196

ABSTRACT

Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.


Subject(s)
Autoimmune Diseases/immunology , Nucleic Acids/metabolism , Animals , Autoimmunity , DNA/immunology , Humans , Signal Transduction , Viruses/immunology
5.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28250132

ABSTRACT

Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines.


Subject(s)
Cytoplasm/chemistry , Nipah Virus/chemistry , Nipah Virus/physiology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/metabolism , Virus Assembly , Virus Release , Amino Acid Motifs , Animals , Cytoplasm/metabolism , Glycoproteins/chemistry , Humans , Nipah Virus/genetics , Protein Domains , Vaccines, Virus-Like Particle , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL