Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 22(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-33286566

ABSTRACT

The cosmological singularity of infinite density, temperature, and spacetime curvature is the classical limit of Friedmann's general relativity solutions extrapolated to the origin of the standard model of cosmology. Jacob Bekenstein suggests that thermodynamics excludes the possibility of such a singularity in a 1989 paper. We propose a re-examination of his particle horizon approach in the early radiation-dominated universe and verify it as a feasible alternative to the classical inevitability of the singularity. We argue that this minimum-radius particle horizon determined from Bekenstein's entropy bound, necessarily quantum in nature as a quantum particle horizon (QPH), precludes the singularity, just as quantum mechanics provided the solution for singularities in atomic transitions as radius r → 0 . An initial radius of zero can never be attained quantum mechanically. This avoids the spacetime singularity, supporting Bekenstein's assertion that Friedmann models cannot be extrapolated to the very beginning of the universe but only to a boundary that is 'something like a particle horizon'. The universe may have begun in a bright flash and quantum flux of radiation and particles at a minimum, irreducible quantum particle horizon rather than at the classical mathematical limit and unrealizable state of an infinite singularity.

2.
Phys Rev Lett ; 102(4): 041101, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257409

ABSTRACT

Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasicircular inspirals, for which kicks as large as approximately 3300 km s;(-1) have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasicircular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible in highly relativistic scatterings to achieve kick velocities as large as 10 000 km s;(-1).

3.
Phys Rev Lett ; 101(6): 061102, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18764445

ABSTRACT

The spin of the final black hole in the coalescence of nonspinning black holes is determined by the "residual" orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole, and the gravitational bursts in a sequence of equal mass encounters. The initial orbital configurations range from those producing an almost direct infall to others leading to numerous orbits before infall, with multiple bursts of radiation. Our sequence consists of orbits with fixed impact parameter. What varies is the initial linear momentum of the black holes. For this sequence, the final black hole of mass M_{h} gets a maximum spin parameter a/M_{h} approximately 0.823, with this maximum occurring for initial orbital angular momentum L/M_{h};{2} approximately 1.176.

4.
Phys Rev Lett ; 98(4): 041602, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17358754

ABSTRACT

We study the intercommuting of semilocal strings and Skyrmions for a wide range of internal parameters, velocities, and intersection angles by numerically evolving the equations of motion. We find that the collisions of strings and strings, strings and Skyrmions, and Skyrmions and Skyrmions all lead to intercommuting for a wide range of parameters. Even the collisions of unstable Skyrmions and strings lead to intercommuting, demonstrating that the phenomenon of intercommuting is very robust, extending to dissimilar field configurations that are not stationary solutions. Even more remarkably, at least for the semilocal U(2) formulation considered here, all intercommutations trigger a reversion to Nielsen-Olesen strings.

SELECTION OF CITATIONS
SEARCH DETAIL