Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Earth Space Chem ; 7(10): 1868-1881, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37881367

ABSTRACT

The redox reaction between natural Fe-containing clay minerals and its sorbates is a fundamental process controlling the cycles of many elements such as carbon, nutrients, redox-sensitive metals, and metalloids (e.g., Co, Mn, As, Se), and inorganic as well as organic pollutants in Earth's critical zone. While the structure of natural clay minerals under oxic conditions is well-known, less is known about their behavior under anoxic and reducing conditions, thereby impeding a full understanding of the mechanisms of clay-driven reduction and oxidation (redox) reactions especially under reducing conditions. Here we investigate the structure of a ferruginous natural clay smectite, nontronite, under different redox conditions, and compare several methods for the determination of iron redox states. Iron in nontronite was gradually reduced chemically with the citrate-bicarbonate-dithionite (CBD) method. 57Fe Mössbauer spectrometry, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) spectroscopy including its pre-edge, extended X-ray absorption fine structure (EXAFS) spectroscopy, and mediated electrochemical oxidation and reduction (MEO/MER) provided consistent Fe(II)/Fe(III) ratios. By combining X-ray diffraction (XRD) and transmission electron microscopy (TEM), we show that the long-range structure of nontronite at the highest obtained reduction degree of 44% Fe(II) is not different from that of fully oxidized nontronite except for a slight basal plane dissolution on the external surfaces. The short-range order probed by EXAFS spectroscopy suggests, however, an increasing structural disorder and Fe clustering with increasing reduction of structural Fe.

2.
Nanomaterials (Basel) ; 12(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564279

ABSTRACT

Co/Fe-based layered double hydroxides (LDHs) are among the most promising materials for electrochemical applications, particularly in the development of energy storage devices, such as electrochemical capacitors. They have also been demonstrated to function as energy conversion catalysts in photoelectrochemical applications for CO2 conversion into valuable chemicals. Understanding the formation mechanisms of such compounds is therefore of prime interest for further controlling the chemical composition, structure, morphology, and/or reactivity of synthesized materials. In this study, a combination of X-ray diffraction, vibrational and absorption spectroscopies, as well as physical and chemical analyses were used to provide deep insight into the coprecipitation formation mechanisms of Co/Fe-based LDHs under high supersaturation conditions. This procedure consists of adding an alkaline aqueous solution (2.80 M NaOH and 0.78 M Na2CO3) into a cationic solution (0.15 M CoII and 0.05 M FeIII) and varying the pH until the desired pH value is reached. Beginning at pH 2, pH increases induce precipitation of FeIII as ferrihydrite, which is the pristine reactional intermediate. From pH > 2, CoII sorption on ferrihydrite promotes a redox reaction between FeIII of ferrihydrite and the sorbed CoII. The crystallinity of the poorly crystalized ferrihydrite progressively decreases with increasing pH. The combination of such a phenomenon with the hydrolysis of both the sorbed CoIII and free CoII generates pristine hydroxylated FeII/CoIII LDHs at pH 7. Above pH 7, free CoII hydrolysis proceeds, which is responsible for the local dissolution of pristine LDHs and their reprecipitation and then 3D organization into CoII4FeII2CoIII2 LDHs. The progressive incorporation of CoII into the LDH structure is accountable for two phenomena: decreased coulombic attraction between the positive surface-charge sites and the interlayer anions and, concomitantly, the relative redox potential evolution of the redox species, such as when FeII is re-oxidized to FeIII, while CoIII is re-reduced to CoII, returning to a CoII6FeIII2 LDH. The nature of the interlamellar species (OH−, HCO3−, CO32− and NO3−) depends on their mobility and the speciation of anions in response to changing pH.

3.
Langmuir ; 36(32): 9449-9464, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32696647

ABSTRACT

Water in calcium silicate hydrate (C-S-H) is one of the key parameters driving the macroscopic behavior of cement materials for which water vapor partial pressure has an impact on Young's modulus and the volumic properties. Several samples of C-S-H with a bulk Ca/Si ratio ranging between 0.6 and 1.6 were characterized to study their dehydration/hydration behavior under water-controlled conditions using29Si NMR, water adsorption volumetry, X-ray diffraction, and Fourier-transform near-infrared diffuse reflectance under various water pressures. Coherent with several previous studies, it was observed that an increase in the Ca/Si ratio is due to the progressive omission of Si bridging tetrahedra, with the resulting charge being compensated for by interlayer Ca, and that water conditioning influences the layer-to-layer distance and the achieved NMR spectral resolution. Water desorption experiments exhibit one step toward low relative pressure, accompanied by a decrease in the layer-to-layer distance. When sufficient energy is provided to the system (T ≥ 40 °C under vacuum) to remove the interlayer water, the shrinkage/swelling is partially reversible in our experimental conditions. A change in layer-to-layer distance of less than 3 Å is measured in the C-S-H between the wet and dried states. When the bridging SiO2 tetrahedra are omitted, interlayer Ca interacts with layer O and water interacts with the cations and potentially with the surfaces. This structural organization is interpreted as a mid-plane monolayer of water in the interlayer space, this latter accounting for about 30% of the volume of C-S-H particles.

4.
Micron ; 67: 50-64, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25016590

ABSTRACT

The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences.

5.
Environ Sci Technol ; 45(3): 943-50, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21174457

ABSTRACT

Organotin compounds are used as pesticides and fungicides as well as additives in plastics. This study identifies the de novo generation of novel volatile organotins in municipal waste deposits and their release via landfill gas. Besides tetramethyltin (Me(4)Sn), a strong neurotoxin, and 5 previously reported organotins, 13 novel ethylated, propylated, and butylated tetraalkyltin compounds were identified. A concentration of 2-4 µg of Sn m(-3) landfill gas was estimated for two landfill sites in Scotland. The atmospheric stability of Me(4)Sn and methylated tin hydrides was determined empirically in a static atmosphere in the dark and under UV light to simulate night- and daytime conditions. Theoretical calculations were carried out to help predict the experimentally obtained stabilities and to estimate the relative stabilities of other alkylated species. Assuming first-order kinetics, the atmospheric half-life for Me(3)SnH was found to be 33 ± 16 and 1311 ± 111 h during day- and nighttime conditions, respectively. Polyalkylation and larger alkyl substitutes tend to reduce the atmospheric stability. These results show that substantial concentrations of neurotoxic organotin compounds can be released from landfill sites and are sufficiently stable in the atmosphere to travel over large distances in night- and daytime conditions to populated areas.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Models, Chemical , Organotin Compounds/chemistry , Pesticides/chemistry , Air Pollutants/analysis , Environmental Monitoring , Hydroxyl Radical/chemistry , Organotin Compounds/analysis , Pesticides/analysis , Refuse Disposal , Tin/chemistry , Volatile Organic Compounds/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...