Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 20(1): 75, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783337

ABSTRACT

BACKGROUND: The sweet potato whitefly (Bemisia tabaci) is a globally important insect pest that damages crops through direct feeding and by transmitting viruses. Current B. tabaci management revolves around the use of insecticides, which are economically and environmentally costly. Host plant resistance is a sustainable option to reduce the impact of whiteflies, but progress in deploying resistance in crops has been slow. A major obstacle is the high cost and low throughput of screening plants for B. tabaci resistance. Oviposition rate is a popular metric for host plant resistance to B. tabaci because it does not require tracking insect development through the entire life cycle, but accurate quantification is still limited by difficulties in observing B. tabaci eggs, which are microscopic and translucent. The goal of our study was to improve quantification of B. tabaci eggs on several important crop species: cassava, cowpea, melon, sweet potato and tomato. RESULTS: We tested a selective staining process originally developed for leafhopper eggs: submerging the leaves in McBryde's stain (acetic acid, ethanol, 0.2% aqueous acid Fuchsin, water; 20:19:2:1) for three days, followed by clearing under heat and pressure for 15 min in clearing solution (LGW; lactic acid, glycerol, water; 17:20:23). With a less experienced individual counting the eggs, B. tabaci egg counts increased after staining across all five crops. With a more experienced counter, egg counts increased after staining on melons, tomatoes, and cowpeas. For all five crops, there was significantly greater agreement on egg counts across the two counting individuals after the staining process. The staining method worked particularly well on melon, where egg counts universally increased after staining for both counting individuals. CONCLUSIONS: Selective staining aids visualization of B. tabaci eggs across multiple crop plants, particularly species where leaf morphological features obscure eggs, such as melons and tomatoes. This method is broadly applicable to research questions requiring accurate quantification of B. tabaci eggs, including phenotyping for B. tabaci resistance.

2.
Phytopathology ; 114(7): 1554-1565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38602688

ABSTRACT

The unculturable bacterium 'Candidatus Liberibacter solanacearum' (CLso) is responsible for a growing number of emerging crop diseases. However, we know little about the diversity and ecology of CLso and its psyllid vectors outside of agricultural systems, which limits our ability to manage crop disease and understand the impacts this pathogen may have on wild plants in natural ecosystems. In North America, CLso is transmitted to crops by the native potato psyllid (Bactericera cockerelli). However, the geographic and host plant range of the potato psyllid and CLso beyond the borders of agriculture are not well understood. A recent study of historic herbarium specimens revealed that a unique haplotype of CLso was present infecting populations of the native perennial Solanum umbelliferum in California decades before CLso was first detected in crops. We hypothesized that this haplotype and other potentially novel CLso variants are still present in S. umbelliferum populations. To test this, we surveyed populations of S. umbelliferum in Southern California for CLso and potato psyllid vectors. We found multiple haplotypes of CLso and the potato psyllid associated with these populations, with none of these genetic variants having been previously reported in California crops. These results suggest that CLso and its psyllid vectors are much more widespread and diverse in North American natural plant communities than suggested by data collected solely from crops and weeds in agricultural fields. Further characterization of these apparently asymptomatic haplotypes will facilitate comparison with disease-causing variants and provide insights into the continued emergence and spread of CLso.


Subject(s)
Haplotypes , Hemiptera , Insect Vectors , Plant Diseases , Solanum , Hemiptera/microbiology , Animals , Plant Diseases/microbiology , Solanum/microbiology , Insect Vectors/microbiology , Solanum tuberosum/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Rhizobiaceae/physiology , California , Crops, Agricultural/microbiology , Genetic Variation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL