Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Immunol ; 15: 1381091, 2024.
Article in English | MEDLINE | ID: mdl-39136010

ABSTRACT

Introduction: SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods: We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results: More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion: These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , Male , Female , Middle Aged , SARS-CoV-2/immunology , Prognosis , Aged , Longitudinal Studies , Adult , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , Adaptive Immunity , Killer Cells, Natural/immunology , Immunity, Innate
2.
J Thromb Haemost ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173879

ABSTRACT

Platelets navigate the fine balance between homeostasis and injury. They regulate vascular homeostasis and drive repair post-injury amidst leukocyte extravasation. Crucially, platelets initiate extracellular traps generation and promote immunothrombosis. In chronic human diseases, platelet action often extends beyond its normative role, sparking sustained reciprocal activation of leukocytes and mural cells, culminating in adverse vascular remodeling. Studies in the last decade have spotlighted a novel key player in platelet activation, the high mobility group box 1 (HMGB1) protein. Despite its initial characterization as a chromatin molecule, anucleated platelets express abundant HMGB1, which has emerged as a linchpin in thromboinflammatory risks and microvascular remodeling. We propose that a comprehensive assessment of platelet HMGB1, spanning quantification of content, membrane localization, and accumulation of HMGB1-expressing vesicles in biological fluids should be integral to dissecting and quantifying platelet activation. This review provides evidence supporting this claim and underscores the significance of platelet HMGB1 as a biomarker in conditions associated with heightened thrombotic risks and systemic microvascular involvement, spanning cardiovascular, autoimmune and infectious diseases.

3.
Sci Rep ; 14(1): 16119, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997256

ABSTRACT

Pre-existing mental disorders are considered a risk factor for severe COVID-19 outcomes, possibly because of higher vascular burden. Moreover, an unconventional platelet activation characterizes COVID-19 and contributes to inflammatory and thrombotic manifestations. In the light of the inflammation theory of mental disorders, we hypothesized that patients with mental disorders could be sensitive to the SARS-CoV-2 elicited platelet activation. We investigated platelet activation in 141 COVID-19 survivors at one month after clearance of the virus, comparing subjects with or without an established pre-existing diagnosis of mental disorder according to the DSM-5. We found that platelets from patients with a positive history of psychiatric disorder underwent unconventional activation more frequently than conventional activation or no activation at all. Such preferential activation was not detected when platelets from patients without a previous psychiatric diagnosis were studied. When testing the effects of age, sex, and psychiatric history on the platelet activation, GLZM multivariate analysis confirmed the significant effect of diagnosis only. These findings suggest a preferential platelet activation during acute COVID-19 in patients with a pre-existing psychiatric disorder, mediated by mechanisms associated with thromboinflammation. This event could have contributed to the higher risk of severe outcome in the psychiatric population.


Subject(s)
COVID-19 , Mental Disorders , Platelet Activation , SARS-CoV-2 , Survivors , Humans , COVID-19/blood , COVID-19/complications , COVID-19/psychology , Male , Female , Middle Aged , Adult , SARS-CoV-2/isolation & purification , Aged , Blood Platelets , Risk Factors
4.
Br J Haematol ; 203(4): 656-667, 2023 11.
Article in English | MEDLINE | ID: mdl-37615207

ABSTRACT

Abnormalities of platelet function were reported in patients with severe COVID-19 (severe-C), but few data are available in patients with mild COVID-19 (mild-C) and after COVID-19 recovery. The aim of this study was to investigate platelet parameters in mild-C patients (n = 51), with no evidence of pneumonia, and severe-C patients (n = 49), during the acute phase and after recovery, compared to 43 healthy controls. Both mild-C and severe-C patients displayed increased circulating activated platelets, low δ-granule content (ADP, serotonin), impaired platelet activation by collagen (light transmission aggregometry) and impaired platelet thrombus formation on collagen-coated surfaces under controlled flow conditions (300/s shear rate). The observed abnormalities were more marked in severe-C patients than in mild-C patients. Overall, 61% (30/49) of mild-C and 73% (33/45) of severe-C patients displayed at least one abnormal platelet parameter. In a subgroup of just 13 patients who showed no persisting signs/symptoms of COVID-19 and were re-evaluated at least 1 month after recovery, 11 of the 13 subjects exhibited normalization of platelet parameters. In conclusion, mild abnormalities of platelet parameters were present not only in severe-C but also, albeit to a lesser extent, in mild-C patients during the acute phase of COVID-19 and normalized in most tested patients after clinical recovery.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/physiology , Platelet Aggregation , Platelet Activation , Collagen
5.
Nat Immunol ; 24(6): 925-940, 2023 06.
Article in English | MEDLINE | ID: mdl-37188941

ABSTRACT

Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.


Subject(s)
Ischemic Stroke , Stroke , Mice , Animals , Neutrophils , Leukocytes , Stroke/pathology , Aging , Ischemic Stroke/pathology
7.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563373

ABSTRACT

Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide-a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.


Subject(s)
Neutrophils , Pulmonary Disease, Chronic Obstructive , Sulfonamides , para-Aminobenzoates , Cytokines/metabolism , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Sulfonamides/therapeutic use , para-Aminobenzoates/therapeutic use
8.
Front Immunol ; 13: 1076167, 2022.
Article in English | MEDLINE | ID: mdl-36700193

ABSTRACT

Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (ß2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against ß2GPI, both peripheral and tissue CD4+ ß2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that ß2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated ß2GPI on NETs, and its ability to stimulate CD4+ß2GPI-specific T cells. The aim of this review is to elucidate the role of ß2GPI in the cross-talk between the innate and adaptive immunity in APS.


Subject(s)
Antiphospholipid Syndrome , Extracellular Traps , Thrombosis , beta 2-Glycoprotein I , Animals , Female , Pregnancy , Adaptive Immunity , Antibodies, Antiphospholipid , beta 2-Glycoprotein I/metabolism , Extracellular Traps/metabolism , Thrombosis/complications , Immunity, Innate
9.
J Thromb Haemost ; 20(2): 434-448, 2022 02.
Article in English | MEDLINE | ID: mdl-34710269

ABSTRACT

BACKGROUND: Platelet activation and thrombotic events characterizes COVID-19. OBJECTIVES: To characterize platelet activation and determine if SARS-CoV-2 induces platelet activation. PATIENTS/METHODS: We investigated platelet activation in 119 COVID-19 patients at admission in a university hospital in Milan, Italy, between March 18 and May 5, 2020. Sixty-nine subjects (36 healthy donors, 26 patients with coronary artery disease, coronary artery disease, and seven patients with sepsis) served as controls. RESULTS: COVID-19 patients had activated platelets, as assessed by the expression and distribution of HMGB1 and von Willebrand factor, and by the accumulation of platelet-derived (plt) extracellular vesicles (EVs) and HMGB1+ plt-EVs in the plasma. P-selectin upregulation was not detectable on the platelet surface in a fraction of patients (55%) and the concentration of soluble P-selectin in the plasma was conversely increased. The plasma concentration of HMGB1+ plt-EVs of patients at hospital admission remained in a multivariate analysis an independent predictor of the clinical outcome, as assessed using a 6-point ordinal scale (from 1 = discharged to 6 = death). Platelets interacting in vitro with SARS-CoV-2 underwent activation, which was replicated using SARS-CoV-2 pseudo-viral particles and purified recombinant SARS-CoV-2 spike protein S1 subunits. Human platelets express CD147, a putative coreceptor for SARS-CoV-2, and Spike-dependent platelet activation, aggregation and granule release, release of soluble P-selectin and HMGB1+ plt-EVs abated in the presence of anti-CD147 antibodies. CONCLUSIONS: Hence, an early and intense platelet activation, which is reproduced by stimulating platelets in vitro with SARS-CoV-2, characterizes COVID-19 and could contribute to the inflammatory and hemostatic manifestations of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Blood Platelets , Humans , Platelet Activation , Spike Glycoprotein, Coronavirus
10.
Arthritis Rheumatol ; 74(2): 318-328, 2022 02.
Article in English | MEDLINE | ID: mdl-34279048

ABSTRACT

OBJECTIVE: It is unclear why activated platelets and platelet-derived microparticles (MPs) accumulate in the blood of patients with systemic sclerosis (SSc). This study was undertaken to investigate whether defective phagocytosis might contribute to MP accumulation in the blood of patients with SSc. METHODS: Blood samples were obtained from a total of 81 subjects, including 25 patients with SSc and 26 patients with stable coronary artery disease (CAD). Thirty sex- and age-matched healthy volunteers served as controls. Studies were also conducted in NSG mice, in which the tail vein of the mice was injected with MPs, and samples of the lung parenchyma were obtained for analysis of the pulmonary microvasculature. Tissue samples from human subjects and from mice were assessed by flow cytometry and immunochemical analyses for determination of platelet-neutrophil interactions, phagocytosis, levels and distribution of P-selectin, P-selectin glycoprotein ligand 1 (PSGL-1), and HMGB1 on platelets and MPs, and concentration of byproducts of neutrophil extracellular trap (NET) generation/catabolism. RESULTS: Activated P-selectin+ platelets and platelet-derived HMGB1+ MPs accumulated in the blood of SSc patients but not in the blood of healthy controls. Patients with CAD, a vasculopathy independent of systemic inflammation, had fewer P-selectin+ platelets and a negligible number of MPs. The expression of the receptor for P-selectin, PSGL-1, in neutrophils from SSc patients was significantly decreased, raising the possibility that phagocytes in SSc do not recognize activated platelets, leading to a failure of phagocytosis and continued neutrophil release of MPs. As evidence of this process, activated platelets were not detected in the neutrophils from SSc patients, whereas they were consistently present in the neutrophils from patients with CAD. HMGB1+ MPs elicited generation of NETs, which were only detected in the plasma of SSc patients. In mice, P-selectin-PSGL-1 interaction resulted in platelet phagocytosis in vitro and influenced the ability of MPs to elicit NETs, endothelial activation, and migration of leukocytes through the pulmonary microvasculature. CONCLUSION: The clearance of activated platelets via PSGL-1 limits the undesirable effects of MP-elicited neutrophil activation. This balance is disrupted in patients with SSc. Its reconstitution might curb vascular inflammation and prevent fibrosis.


Subject(s)
Blood Platelets/physiology , Cell-Derived Microparticles , Membrane Glycoproteins/physiology , Phagocytosis , Scleroderma, Systemic/blood , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged
11.
Front Immunol ; 12: 772239, 2021.
Article in English | MEDLINE | ID: mdl-34804064

ABSTRACT

This contribution explores in a new statistical perspective the antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 141 coronavirus disease 2019 (COVID-19) patients exhibiting a broad range of clinical manifestations. This cohort accurately reflects the characteristics of the first wave of the SARS-CoV-2 pandemic in Italy. We determined the IgM, IgA, and IgG levels towards SARS-CoV-2 S1, S2, and NP antigens, evaluating their neutralizing activity and relationship with clinical signatures. Moreover, we longitudinally followed 72 patients up to 9 months postsymptoms onset to study the persistence of the levels of antibodies. Our results showed that the majority of COVID-19 patients developed an early virus-specific antibody response. The magnitude and the neutralizing properties of the response were heterogeneous regardless of the severity of the disease. Antibody levels dropped over time, even though spike reactive IgG and IgA were still detectable up to 9 months. Early baseline antibody levels were key drivers of the subsequent antibody production and the long-lasting protection against SARS-CoV-2. Importantly, we identified anti-S1 IgA as a good surrogate marker to predict the clinical course of COVID-19. Characterizing the antibody response after SARS-CoV-2 infection is relevant for the early clinical management of patients as soon as they are diagnosed and for implementing the current vaccination strategies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin A/blood , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Female , HEK293 Cells , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Young Adult
12.
Mol Med ; 27(1): 129, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663207

ABSTRACT

BACKGROUND: Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. METHODS: We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. RESULTS: Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233-0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547-0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. CONCLUSIONS: CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19.


Subject(s)
COVID-19/diagnosis , Chemokine CXCL10/blood , Coronary Artery Disease/diagnosis , Diabetes Mellitus/diagnosis , Hypertension/diagnosis , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/immunology , COVID-19/mortality , Comorbidity , Coronary Artery Disease/blood , Coronary Artery Disease/immunology , Coronary Artery Disease/mortality , Creatine/blood , Diabetes Mellitus/blood , Diabetes Mellitus/immunology , Diabetes Mellitus/mortality , Female , Hospitalization , Humans , Hypertension/blood , Hypertension/immunology , Hypertension/mortality , Immunity, Humoral , Immunity, Innate , Inflammation , Intensive Care Units , L-Lactate Dehydrogenase/blood , Leukocyte Count , Lymphocytes/immunology , Lymphocytes/pathology , Male , Middle Aged , Neutrophils/immunology , Neutrophils/pathology , Prognosis , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
13.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Article in English | MEDLINE | ID: mdl-34031543

ABSTRACT

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Subject(s)
COVID-19/pathology , Extracellular Traps/metabolism , Neutrophils/immunology , COVID-19/complications , COVID-19/immunology , Citrullination , Complement Activation , Humans , Neutrophils/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombosis/etiology
14.
J Neurol Sci ; 423: 117355, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33647733

ABSTRACT

BACKGROUND: Inflammation is emerging as an essential trigger for thrombosis. In the interplay between innate immunity and coagulation cascade, neutrophils and neutrophil extracellular traps (NETs) can promote thrombus formation and stabilization. In ischemic stroke, it is uncertain whether the involvement of the inflammatory component may differ in thrombi of diverse etiology. We here aimed to evaluate the presence of neutrophils and NETs in cerebral thrombi of diverse etiology retrieved by endovascular thrombectomy (EVT). METHODS: We performed a systematic histological analysis on 80 human cerebral thrombi retrieved through EVT in acute ischemic stroke patients. Thrombus composition was investigated in terms of neutrophils (MPO+ cells) and NET content (citH3+ area), employing specific immunostainings. NET plasma content was determined and compared to NET density in the thrombus. RESULTS: Neutrophils and NETs were heterogeneously represented within all cerebral thrombi. Thrombi of diverse etiology did not display a statistically significant difference in the number of neutrophils (p = 0.51). However, NET content was significantly increased in cardioembolic compared to large artery atherosclerosis thrombi (p = 0.04), and the association between NET content and stroke etiology remained significant after adjusted analysis (beta coefficient = -6.19, 95%CI = -11.69 to -1.34, p = 0.01). Moreover, NET content in the thrombus was found to correlate with NET content in the plasma (p ≤ 0.001, r = 0.62). CONCLUSION: Our study highlights how the analysis of the immune component within the cerebral thrombus, and specifically the NET burden, might provide additional insight for differentiating stroke from diverse etiologies.


Subject(s)
Brain Ischemia , Extracellular Traps , Intracranial Thrombosis , Stroke , Brain Ischemia/complications , Humans , Intracranial Thrombosis/complications , Neutrophils , Stroke/complications , Thrombectomy
15.
Int J Cardiol ; 324: 261-266, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33002521

ABSTRACT

In patients with severe or critical Coronavirus disease 2019 (COVID-19) manifestations, a thromboinflammatory syndrome, with diffuse microvascular thrombosis, is increasingly evident as the final step of pro-inflammatory cytokines storm. Actually, no proven effective therapies for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exist. Preliminary observations on anticoagulant therapy appear to be associated with better outcomes in moderate and severe COVID-19 patients with signs of coagulopathy and in those requiring mechanical ventilation. The pathophysiology underlying the prothrombotic state elicited by SARS-CoV-2 outlines possible protective mechanisms of antithrombotic therapy (in primis anticoagulants) for this viral illness. The indications for antiplatelet/anticoagulant use (prevention, prophylaxis, therapy) are guided by the clinical context and the COVID-19 severity. We provide a practical approach on antithrombotic therapy management for COVID-19 patients from a multidisciplinary point of view.


Subject(s)
COVID-19 Drug Treatment , COVID-19/blood , Evidence-Based Medicine/trends , Fibrinolytic Agents/therapeutic use , Anticoagulants/therapeutic use , COVID-19/physiopathology , Humans , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/physiopathology
16.
Res Pract Thromb Haemost ; 4(5): 680-713, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685876

ABSTRACT

The 2020 Congress of the International Society of Thrombosis and Haemostasis (ISTH) was held virtually July 12-15, 2019, due to the coronavirus disease 2019 pandemic. The congress convenes annually to discuss clinical and basic topics in hemostasis and thrombosis. Each year, the program includes State of Art (SOA) lectures given by prominent scientists. Presenters are asked to create Illustrated Capsules of their talks, which are concise illustrations with minimal explanatory text. Capsules cover major themes of the presentation, and these undergo formal peer review for inclusion in this article. Owing to the shift to a virtual congress this year, organizers reduced the program size. There were 39 SOA lectures virtually presented, and 29 capsules (9 from talks omitted from the virtual congress) were both submitted and successful in peer review, and are included in this article. Topics include the roles of the hemostatic system in inflammation, infection, immunity, and cancer, platelet function and signaling, platelet function disorders, megakaryocyte biology, hemophilia including gene therapy, phenotype tests in hemostasis, von Willebrand factor, anticoagulant factor V, computational driven discovery, endothelium, clinical and basic aspects of thrombotic microangiopathies, fibrinolysis and thrombolysis, antithrombotics in pediatrics, direct oral anticoagulant management, and thrombosis and hemostasis in pregnancy. Capsule authors invite virtual congress attendees to refer to these capsules during the live presentations and participate on Twitter in discussion. Research and Practice in Haemostasis and Thrombosis will release 2 tweets from @RPTHJournal during each presentation, using #IllustratedReview, #CoagCapsule and #ISTH2020. Readers are also welcome to utilize capsules for teaching and ongoing education.

17.
Platelets ; 31(2): 179-186, 2020.
Article in English | MEDLINE | ID: mdl-30892978

ABSTRACT

Background. Studies of platelet aggregation (PA) in essential thrombocythemia (ET) reported contrasting results, likely due to differences in analytical conditions.Objective. We investigated platelet aggregation using different techniques and analytical conditions.Patients and Methods. PA was studied by light-transmission aggregometry (LTA) in platelet-rich plasma (PRP) and impedance aggregometry in PRP and whole blood (WB). ADP, collagen, thrombin receptor activating peptide (TRAP-14) and adrenaline were used as agonists. Since ET patients (n = 41) were on treatment with aspirin (100 mg/d), healthy controls (n = 29) were given aspirin (100 mg/d) for 5 days before testing: therefore, thromboxane A2-independent PA was tested in all subjects. Blood samples were collected in citrate (C) [low Ca2+] or lepirudin (L) [physiological Ca2+]; platelet count was adjusted to 250 x 109/L in a set of C-PRP (adjusted C-PRP) and left unmodified in the other samples.Results. Results of PA in 17 ET patients who were poor responders to aspirin (high serum thromboxane B2 levels) were not included in the analysis. With LTA, PA in ET was lower than in controls in adjusted C-PRP and normal in native C-PRP and L-PRP. With impedance aggregometry, PA in L-PRP and L-WB tended to be higher in ET than in controls. Platelet serotonin and ADP contents were reduced in ET. The percentages of circulating platelets expressing P-selectin and platelet-leukocyte hetero-aggregates were higher in ET.Conclusions. Analytical conditions dramatically affect in vitro PA of ET patients, which appears defective under the least physiological conditions and normal/supranormal under conditions that are closer to the physiological.


Subject(s)
Blood Platelets/physiology , Platelet Function Tests/methods , Platelet-Rich Plasma , Thrombocythemia, Essential/blood , Adenine Nucleotides/blood , Adult , Aged , Aged, 80 and over , Aspirin , Blood Platelets/drug effects , Blood Platelets/metabolism , Citric Acid/pharmacology , Female , Humans , Male , Middle Aged , P-Selectin/blood , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Count , Platelet-Rich Plasma/drug effects , Serotonin/blood , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/pathology , Young Adult
18.
Front Immunol ; 10: 2491, 2019.
Article in English | MEDLINE | ID: mdl-31695699

ABSTRACT

Regulated hemostasis, inflammation and innate immunity entail extensive interactions between platelets and neutrophils. Under physiological conditions, vascular inflammation offers a template for the establishment of effective intravascular immunity, with platelets providing neutrophils with an array of signals that increase their activation threshold, thus limiting collateral damage to tissues and promoting termination of the inflammatory response. By contrast, persistent systemic inflammation as observed in immune-mediated diseases, such as systemic vasculitides, systemic sclerosis, systemic lupus erythematosus or rheumatoid arthritis is characterized by platelet and neutrophil reciprocal activation, which ultimately culminates in the generation of thrombo-inflammatory lesions, fostering vascular injury and organ damage. Here, we discuss recent evidence regarding the multifaceted aspects of platelet-neutrophil interactions from bone marrow precursors to shed microparticles. Moreover, we analyse shared and disease-specific events due to an aberrant deployment of these interactions in human diseases. To restore communications between the pillars of the immune-hemostatic continuum constitutes a fascinating challenge for the near future.


Subject(s)
Blood Platelets/immunology , Cell Communication/immunology , Neutrophil Activation , Neutrophils/immunology , Platelet Activation , Animals , Blood Platelets/pathology , Chronic Disease , Humans , Inflammation/immunology , Inflammation/pathology , Neutrophils/pathology
19.
Sci Rep ; 9(1): 14678, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604985

ABSTRACT

Neutrophil extracellular traps (NETs) are DNAs products involved in immune process. Obesity through a low-grade chronic inflammation determines neutrophil activation, but it is still unclear its role in NETs formation. Here we analyzed the NETs levels in healthy and morbid obese, their association with anthropometric and glyco-metabolic parameters and their changes after bariatric surgery. For this study, we enrolled 73 patients with morbid obesity (BMI ≥40 kg/m2 or ≥35 kg/m2 + comorbidity) eligible to sleeve gastrectomy. In parallel, 55 healthy subjects and 21 patients with severe coronary artery disease were studied as controls. We evaluated anthropometric parameters, peripheral blood pressure, biochemical and serum analysis at the enrollment and at twelve months after surgery. Plasmatic levels of MPO-DNA complexes were assessed by ELISA. NETs levels were higher in obese than in control group (p < 0.001) and correlated with the main anthropometric variable (BMI, waist, hip), glyco-metabolic variables and systolic blood pressure. NETs trend after intervention was uneven. The reduction of NETs correlated with the entity of reduction of BMI (ρ = 0.416, p < 0.05), visceral fat area (ρ = 0.351, p < 0.05), and glycemia (ρ = 0.495, p < 0.001). In medical history of patients in whom NETs increased, we observed a higher number of thromboembolic events. Our observations indicate that severe obesity is associated with increased generation of NETs, which in turn could influence the patients' systemic inflammatory state. Weight loss and in particular, loss of adipose tissue after bariatric surgery does not in itself correct NET's dysregulated production. Finally, patients in whom NETs accumulation persists after surgery are probably those at the highest risk of cardiovascular events.


Subject(s)
Extracellular Traps/metabolism , Intra-Abdominal Fat/metabolism , Obesity, Morbid/blood , Weight Loss , Adult , Aged , Anthropometry , Bariatric Surgery , Blood Glucose , Blood Pressure/physiology , Female , Humans , Intra-Abdominal Fat/physiopathology , Intra-Abdominal Fat/surgery , Male , Middle Aged , Obesity, Morbid/pathology , Obesity, Morbid/surgery
20.
J Immunol ; 203(1): 247-258, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31127033

ABSTRACT

The signals that control endothelial plasticity in inflamed tissues have only been partially characterized. For example, it has been shown that inadequate vasculogenesis in systemic sclerosis (SSc) has been associated with an endothelial defect. We used a genetic lineage tracing model to investigate whether endothelial cells die or change phenotypically after fibrosis induction and whether signals released by cells of the innate immune system and in the blood of patients influence their commitment. We observed that in the lineage-tracing transgenic mice Cdh5-CreERT2::R26R-EYFP, endothelial-derived cells (EdCs) underwent fibrosis after treatment with bleomycin, and EdCs retrieved from the lung showed expression of endothelial-to-mesenchymal transition (EndoMT) markers. Liposome-encapsulated clodronate was used to assess macrophage impact on EdCs. Clodronate treatment affected the number of alternatively activated macrophages in the lung, with upregulated expression of EndoMT markers in lung EdCs. Endothelial fate and function were investigated in vitro upon challenge with serum signals from SSc patients or released by activated macrophages. Sera of SSc patients with anti-Scl70 Abs, at higher risk of visceral organ fibrosis, induced EndoMT and jeopardized endothelial function. In conclusion, EdCs in SSc might be defective because of commitment to a mesenchymal fate, which is sustained by soluble signals in the patient's blood. Macrophages contribute to preserve the endothelial identity of precursor cells. Altered macrophage-dependent plasticity of EdCs could contribute to link vasculopathy with fibrosis.


Subject(s)
Endothelium/physiology , Inflammation/immunology , Lung/pathology , Macrophages/physiology , Mesenchymal Stem Cells/physiology , Scleroderma, Systemic/immunology , Animals , Autoantibodies/metabolism , Cell Differentiation , Cell Lineage , Cell Plasticity , Cells, Cultured , Clodronic Acid , DNA Topoisomerases, Type I , Fibrosis , Humans , Immunity, Innate , Mice , Mice, Transgenic , Neovascularization, Pathologic , Nuclear Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL