Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 36(29)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38579744

ABSTRACT

Bottom-up synthesis from molecular precursors is a powerful route for the creation of novel synthetic carbon-based low-dimensional materials, such as planar carbon lattices. The wealth of conceivable precursor molecules introduces a significant number of degrees-of-freedom for the design of materials with defined physical properties. In this context,a prioriknowledge of the electronic, vibrational and optical properties provided by modernab initiosimulation methods can act as a valuable guide for the design of novel synthetic carbon-based building blocks. Using density functional theory, we performed simulations of the electronic properties of armchair-edged graphene nanoribbons (AGNR) with a bisecting 4-8 ring defect line. We show that the electronic structures of the defective nanoribbons of increasing width can be classified into three distinct families of semiconductors, similar to the case of pristine AGNR. In contrast to the latter, we find that every third nanoribbon is a zero-gap semiconductor with Dirac-type crossing of linear bands at the Fermi energy. By employing tight-binding models including interactions up to third-nearest neighbors, we show that the family behavior, the formation of direct and indirect band gaps and of linear band crossings in the defective nanoribbons is rooted in the electronic properties of the individual nanoribbon halves on either side of the defect lines, and can be effectively through introduction of additional 'interhalf' coupling terms.

2.
Nano Lett ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597670

ABSTRACT

We report experimental and theoretical studies of MoTe2-MoSe2 heterobilayers with rigid moiré superlattices controlled by the twist angle. Using an effective continuum model that combines resonant interlayer electron tunneling with stacking-dependent moiré potentials, we identify the nature of moiré excitons and the dependence of their energies, oscillator strengths, and Landé g-factors on the twist angle. Within the same framework, we interpret distinct signatures of bound complexes among electrons and moiré excitons in nearly collinear heterostacks. Our work provides a fundamental understanding of hybrid moiré excitons and trions in MoTe2-MoSe2 heterobilayers and establishes the material system as a prime candidate for optical studies of correlated phenomena in moiré lattices.

3.
Angew Chem Int Ed Engl ; 63(20): e202402417, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38489608

ABSTRACT

Functionalizing single-walled carbon nanotubes (SWCNTs) in a robust way that does not affect the sp2 carbon framework is a considerable research challenge. Here we describe how triiodide salts of positively charged macrocycles can be used not only to functionalize SWCNTs from the outside, but simultaneously from the inside. We employed disulfide exchange in aqueous solvent to maximize the solvophobic effect and therefore achieve a high degree of macrocycle immobilization. Characterization by Raman spectroscopy, EDX-STEM and HR-TEM clearly showed that serendipitously this wet-chemical functionalization procedure also led to the encapsulation of polyiodide chains inside the nanotubes. The resulting three-shell composite materials are redox-active and experience an intriguing interplay of electrostatic, solvophobic and mechanical effects that could be of interest for applications in energy storage.

4.
J Am Chem Soc ; 146(1): 1026-1034, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38117539

ABSTRACT

Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.

5.
Ultrason Sonochem ; 98: 106528, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506508

ABSTRACT

Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.

6.
Molecules ; 28(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36903408

ABSTRACT

Here we present an approach to functionalize silanized single-walled carbon nanotubes (SWNTs) through copper-free click chemistry for the assembly of inorganic and biological nanohybrids. The nanotube functionalization route involves silanization and strain-promoted azide-alkyne cycloaddition reactions (SPACC). This was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and Fourier transform infra-red spectroscopy. Silane-azide-functionalized SWNTs were immobilized from solution onto patterned substrates through dielectrophoresis (DEP). We demonstrate the general applicability of our strategy for the functionalization of SWNTs with metal nanoparticles (gold nanoparticles), fluorescent dyes (Alexa Fluor 647) and biomolecules (aptamers). In this regard, dopamine-binding aptamers were conjugated to the functionalized SWNTs to perform real-time detection of dopamine at different concentrations. Additionally, the chemical route is shown to selectively functionalize individual nanotubes grown on the surface of silicon substrates, contributing towards future nano electronic device applications.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Gold , Azides/chemistry , Dopamine
7.
ACS Nano ; 16(6): 9701-9712, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35709384

ABSTRACT

Photoluminescent color conversion by quantum dots (QDs) makes possible the formation of spectrum-on-demand light sources by combining blue LEDs with the light generated by a specific blend of QDs. Such applications, however, require a near-unity photoluminescence quantum efficiency since self-absorption magnifies disproportionally the impact of photon losses on the overall conversion efficiency. Here, we present a synthesis protocol for forming InP-based QDs with +90% quantum efficiency across the full visible spectrum from blue/cyan to red. The central features of our approach are as follows: (1) the formation of InP core QDs through one-batch-one-size reactions based on aminophosphine as the phosphorus precursor, (2) the introduction of a core/shell/shell InP/Zn(Se,S)/ZnS structure, and (3) the use of specific interfacial treatments, most notably the saturation of the ZnSe surface with zinc acetate prior to ZnS shell growth. Moreover, we adapted the composition of the Zn(Se,S) inner shell to attain the intended emission color while minimizing line broadening induced by the InP/ZnS lattice mismatch. The protocol is established by analysis of the QD composition and structure using multiple techniques, including solid-state nuclear magnetic resonance spectroscopy and Raman spectroscopy, and verified for reproducibility by having different researchers execute the same protocol. The realization of full-spectrum, +90% quantum efficiency will strongly facilitate research into light-matter interaction in general and luminescent color conversion in particular through InP-based QDs.

8.
Chemistry ; 27(52): 13117-13122, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34357651

ABSTRACT

The development of an efficient method to patterning 2D MoS2 into a desired topographic structure is of particular importance to bridge the way towards the ultimate device. Herein, we demonstrate a patterning strategy by combining the electron beam lithography with the surface covalent functionalization. This strategy allows us to generate delicate MoS2 ribbon patterns with a minimum feature size of 2 µm in a high throughput rate. The patterned monolayer MoS2 domain consists of a spatially well-defined heterophase homojunction and alternately distributed surface characteristics, which holds great interest for further exploration of MoS2 based devices.

9.
Angew Chem Int Ed Engl ; 60(24): 13484-13492, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33768735

ABSTRACT

Covalent functionalization of two-dimensional molybdenum disulfide (2D MoS2 ) holds great promise in developing robust organic-MoS2 hybrid structures. Herein, for the first time, we demonstrate an approach to building up a bisfunctionalized MoS2 hybrid structure through successively reacting activated MoS2 with alkyl iodide and aryl diazonium salts. This approach can be utilized to modify both colloidal and substrate supported MoS2 nanosheets. We have discovered that compared to the adducts formed through the reactions of MoS2 with diazonium salts, those formed through the reactions of MoS2 with alkyl iodides display higher reactivity towards further reactions with electrophiles. We are convinced that our systematic study on the formation and reactivity of covalently functionalized MoS2 hybrids will provide some practical guidance on multi-angle tailoring of the properties of 2D MoS2 for various potential applications.

10.
Nanoscale ; 12(20): 11088-11094, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32400821

ABSTRACT

The large surface-to-volume ratio in atomically thin 2D materials allows to efficiently tune their properties through modifications of their environment. Artificial stacking of two monolayers into a bilayer leads to an overlap of layer-localized wave functions giving rise to a twist angle-dependent hybridization of excitonic states. In this joint theory-experiment study, we demonstrate the impact of interlayer hybridization on bright and momentum-dark excitons in twisted WSe2 bilayers. In particular, we show that the strong hybridization of electrons at the Λ point leads to a drastic redshift of the momentum-dark K-Λ exciton, accompanied by the emergence of flat moiré exciton bands at small twist angles. We directly compare theoretically predicted and experimentally measured optical spectra allowing us to identify photoluminescence signals stemming from phonon-assisted recombination of layer-hybridized dark excitons. Moreover, we predict the emergence of additional spectral features resulting from the moiré potential of the twisted bilayer lattice.

11.
Nat Commun ; 11(1): 2167, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32358515

ABSTRACT

The recent discovery of artificial phase transitions induced by stacking monolayer materials at magic twist angles represents a paradigm shift for solid state physics. Twist-induced changes of the single-particle band structure have been studied extensively, yet a precise understanding of the underlying Coulomb correlations has remained challenging. Here we reveal in experiment and theory, how the twist angle alone affects the Coulomb-induced internal structure and mutual interactions of excitons. In homobilayers of WSe2, we trace the internal 1s-2p resonance of excitons with phase-locked mid-infrared pulses as a function of the twist angle. Remarkably, the exciton binding energy is renormalized by up to a factor of two, their lifetime exhibits an enhancement by more than an order of magnitude, and the exciton-exciton interaction is widely tunable. Our work opens the possibility of tailoring quasiparticles in search of unexplored phases of matter in a broad range of van der Waals heterostructures.

12.
Phys Rev Lett ; 124(12): 126101, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32281827

ABSTRACT

Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on stoichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.

13.
J Chem Phys ; 151(15): 154704, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640388

ABSTRACT

We investigate the buildup of strain in InP quantum dots with the addition of shells of the lower-lattice constant materials ZnSe and ZnS by Raman spectroscopy. Both materials induce compressive strain in the core, which increases with increasing shell volume. We observe a difference in the shell behavior between the two materials: the thickness-dependence points toward an influence of the material stiffness. ZnS has a larger Young's modulus and requires less material to develop stress on the InP lattice at the interface, while ZnSe requires several layers to form a stress-inducing lattice at the interface. This hints at the material stiffness being an additional parameter of relevance for designing strained core/shell quantum dots.

14.
Chem Sci ; 10(3): 706-717, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30746106

ABSTRACT

The reaction of neutral single-walled carbon nanotubes (SWCNTs) with diazonium salts proceeds with a high selectivity towards metallic carbon nanotube species; this reaction is well-understood and the mechanism has been elucidated. In the present joint theoretical and experimental study, we investigate the reaction of negatively charged SWCNTs - carbon nanotubides - with diazonium salts. Our density functional theory calculations predict a stronger binding of the aryl diazonium cations to charged metallic SWCNTs species and therefore lead to a preferential addend binding in the course of the reaction. The Raman resonance profile analysis on the reductive arylation of carbon nanotubides obtained by the solid state intercalation approach with potassium in varying concentrations confirms the predicted preferred functionalization of metallic carbon nanotubes. Furthermore, we were also able to show that the selectivity for metallic SWCNT species could be further increased when low potassium concentrations (K : C < 1 : 200) are used for an initial selective charging of the metallic species. Further insights into the nature of the bound addends were obtained by coupled thermogravimetric analysis of the functionalized samples.

15.
Phys Rev Lett ; 123(24): 247402, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922842

ABSTRACT

We report light emission around 1 eV (1240 nm) from heterostructures of MoS_{2} and WSe_{2} transition metal dichalcogenide monolayers. We identify its origin in an interlayer exciton (ILX) by its wide spectral tunability under an out-of-plane electric field. From the static dipole moment of the state, its temperature and twist-angle dependence, and comparison with electronic structure calculations, we assign this ILX to the fundamental interlayer transition between the K valleys in this system. Our findings gain access to the interlayer physics of the intrinsically incommensurate MoS_{2}/WSe_{2} heterostructure, including moiré and valley pseudospin effects, and its integration with silicon photonics and optical fiber communication systems operating at wavelengths longer than 1150 nm.

16.
Phys Rev Lett ; 121(16): 167401, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387672

ABSTRACT

In this Letter, we present photoluminescence measurements with different excitation energies on single-layer MoS_{2} and MoSe_{2} in order to examine the resonance behavior of the conservation of circular polarization in these transition metal dichalcogenides. We find that the circular polarization of the emitted light is conserved to 100% in MoS_{2} and 84%/79% (A/A^{-} peaks) in MoSe_{2} close to resonance. The values for MoSe_{2} surpass any previously reported value. However, in contrast to previous predictions, the degree of circular polarization decreases clearly at energies less than the two-phonon longitudinal acoustic phonon energy above the resonance. Our findings indicate that at least two competing processes underly the depolarization of the emission in single-layer transition metal dichalcogenides.

17.
Chemistry ; 24(44): 11354-11363, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29873843

ABSTRACT

The synthesis and characterization of nanotubes from misfit layered compounds (MLCs) of the type (LnS)1+y TaS2 (denoted here as LnS-TaS2 ; Ln=Pr, Sm, Gd, and Yb), not reported before, are described (the bulk compound YbS-LaS2 was not previously documented). Transmission electron microscopy and selected area electron diffraction showed that the interlayer spacing along the c axis decreased with an increase in the atomic number of the lanthanide atom, which suggested tighter interaction between the LnS layer and TaS2 for the late lanthanides. The Raman spectra of the tubules were studied and compared to those of the bulk MLC compounds. Similar to the bulk MLCs, the Raman spectra could be divided into the low-frequency modes (110-150 cm-1 ) of the LnS lattice and the high-frequency modes (250-400 cm-1 ) of the TaS2 lattice. The Raman spectra indicated that the vibrational lattice modes of the strained layers in the tubes were stiffer than those in the bulk compounds. Furthermore, the modes of the late lanthanides were higher in energy than those of the earlier lanthanides, which suggested larger charge transfer between the LnS and TaS2 layers for the late lanthanides. Polarized Raman measurements showed the expected binodal intensity profile (antenna effect). The intensity ratio of the Raman signal showed that the E2g mode of TaS2 was more sensitive to the light-polarization effect than its A1g mode. These nanotubes are expected to reveal interesting low-temperature quasi-1D transport behavior.

18.
J Phys Chem Lett ; 8(22): 5462-5471, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29064705

ABSTRACT

We present an experimental study on the near-field light-matter interaction by tip-enhanced Raman scattering (TERS) with polarized light in three different materials: germanium-doped gallium nitride (GaN), graphene, and carbon nanotubes. We investigate the dependence of the TERS signal on the incoming light polarization and on the sample carrier concentration, as well as the Raman selection rules in the near-field. We explain the experimental data with a tentative quantum mechanical interpretation, which takes into account the role of plasmon polaritons, and the associated evanescent field. The driving force for the breakdown of the classical Raman selection rules in TERS is caused by photon tunneling through the perturbation of the evanescent field, with the consequent polariton annihilation. Predictions based on this quantum mechanical approach are in good agreement with the experimental data, which are shown to be independent of incoming light polarization, leading to new Raman selection rules for TERS.

19.
J Chem Phys ; 147(4): 044303, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28764360

ABSTRACT

The electronic properties of sp2/sp3 diamondoids in the crystalline state and in the gas phase are presented. Apparent differences in electronic properties experimentally observed by resonance Raman spectroscopy in the crystalline/gas phase and absorption measurements in the gas phase were investigated by density functional theory computations. Due to a reorganization of the molecular orbitals in the crystalline phase, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy gaps are lowered significantly by 0.5 eV-1 eV. The π → π* transition is responsible for large absorption in both gas and crystalline phases. It further causes a large increase in the Raman intensity of the C=C stretch vibration when excited resonantly. By resonance Raman spectroscopy we were able to determine the C=C bond length of the trishomocubane dimer to exhibit 1.33 Å in the ground and 1.41 Å in the excited state.

20.
J Am Chem Soc ; 139(30): 10432-10440, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28675300

ABSTRACT

Herein, we have developed a systematic study on the oxidation and passivation of mechanically exfoliated black phosphorus (BP). We analyzed the strong anisotropic behavior of BP by scanning Raman microscopy providing an accurate method for monitoring the oxidation of BP via statistical Raman spectroscopy. Furthermore, different factors influencing the environmental instability of the BP, i.e., thickness, lateral dimensions or visible light illumination, have been investigated in detail. Finally, we discovered that the degradation of few-layer BP flakes of <10 nm can be suppressed for months by using ionic liquids, paving the way for the development of BP-based technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...