Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37930014

ABSTRACT

Recombinant adeno-associated viral vectors (rAAV) can achieve potent and durable transgene expression without integration in a broad range of tissue types, making them a popular choice for gene delivery in animal models and in clinical settings. In addition to therapeutic applications, rAAVs are a useful laboratory tool for delivering transgenes tailored to the researcher's experimental needs and scientific goals in cultured cells. Some examples include exogenous reporter genes, overexpression cassettes, RNA interference, and CRISPR-based tools, including those for genome-wide screens. rAAV transductions are less harmful to cells than electroporation or chemical transfection and do not require any special equipment or expensive reagents to produce. Crude lysates or conditioned media containing rAAVs can be added directly to cultured cells without further purification to transduce many cell types-an underappreciated feature of rAAVs. Here, we provide protocols for basic transgene cassette cloning and demonstrate how to produce and apply crude rAAV preparations to cultured cells. As proof of principle, we demonstrate the transduction of three cell types that have not yet been reported in rAAV applications: placental cells, myoblasts, and small intestinal organoids. We discuss appropriate uses for crude rAAV preparations, the limitations of rAAVs for gene delivery, and considerations for capsid choice. This protocol outlines a simple, low-cost, and effective method for researchers to achieve productive DNA delivery in cell culture using rAAV without the need for laborious titration and purification steps.


Subject(s)
Dependovirus , Genetic Vectors , Pregnancy , Animals , Female , Genetic Vectors/genetics , Dependovirus/genetics , Placenta , Transgenes , Cells, Cultured
2.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37790316

ABSTRACT

Recombinant adeno-associated viral vectors (rAAV) are a powerful tool for gene delivery but have a limited DNA carrying capacity. Efforts to expand this genetic payload have focused on engineering the vector components, such as dual trans-splicing vectors which double the delivery size by exploiting the natural concatenation of rAAV genomes in host nuclei. We hypothesized that inefficient dual vector transduction could be improved by modulating host factors which affect concatenation. Since factors mediating concatenation are not well defined, we performed a genome-wide screen to identify host cell regulators. We discovered that Homologous Recombination (HR) is inhibitory to dual vector transduction. We demonstrate that depletion or inhibition of HR factors BRCA1 and Rad51 significantly increase reconstitution of a large split transgene by increasing both concatenation and expression from rAAVs. Our results define new roles for DNA damage repair in rAAV transduction and highlight the potential for pharmacological intervention to increase genetic payload of rAAV vectors.

3.
Environ Sci Technol ; 55(8): 4880-4888, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33759506

ABSTRACT

Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol, and silica RNA capture matrices to recover sixfold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, which have been proposed as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and in our experience, 20 samples can be processed by one lab technician in approximately 2 h. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Sewage , Silicon Dioxide , Sodium Chloride , Wastewater
4.
medRxiv ; 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33300015

ABSTRACT

Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol and silica RNA capture matrices to recover 6-fold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, both suitable as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and could be performed in approximately 3 hours. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.

5.
RNA ; 26(7): 771-783, 2020 07.
Article in English | MEDLINE | ID: mdl-32358057

ABSTRACT

The current COVID-19 pandemic presents a serious public health crisis, and a better understanding of the scope and spread of the virus would be aided by more widespread testing. Nucleic-acid-based tests currently offer the most sensitive and early detection of COVID-19. However, the "gold standard" test pioneered by the U.S. Centers for Disease Control and Prevention takes several hours to complete and requires extensive human labor, materials such as RNA extraction kits that could become in short supply, and relatively scarce qPCR machines. It is clear that a huge effort needs to be made to scale up current COVID-19 testing by orders of magnitude. There is thus a pressing need to evaluate alternative protocols, reagents, and approaches to allow nucleic-acid testing to continue in the face of these potential shortages. There has been a tremendous explosion in the number of papers written within the first weeks of the pandemic evaluating potential advances, comparable reagents, and alternatives to the "gold-standard" CDC RT-PCR test. Here we present a collection of these recent advances in COVID-19 nucleic acid testing, including both peer-reviewed and preprint articles. Due to the rapid developments during this crisis, we have included as many publications as possible, but many of the cited sources have not yet been peer-reviewed, so we urge researchers to further validate results in their own laboratories. We hope that this review can urgently consolidate and disseminate information to aid researchers in designing and implementing optimized COVID-19 testing protocols to increase the availability, accuracy, and speed of widespread COVID-19 testing.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/genetics , COVID-19 Testing , CRISPR-Cas Systems , Centers for Disease Control and Prevention, U.S. , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Humans , Nasopharynx/virology , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Systems , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/instrumentation , SARS-CoV-2 , Time Factors , United States , Workflow
6.
Hum Gene Ther ; 31(9-10): 499-511, 2020 05.
Article in English | MEDLINE | ID: mdl-32303138

ABSTRACT

Recombinant adeno-associated virus has emerged as one of the most promising gene therapy delivery vectors. Development of these vectors took advantage of key features of the wild-type adeno-associated virus (AAV), enabled by basic studies of the underlying biology and requirements for transcription, replication, and packaging of the viral genome. Each step in generating and utilizing viral vectors involves numerous molecular interactions that together determine the efficiency of vector production and gene delivery. Once delivered into the cell, interactions with host proteins will determine the fate of the viral genome, and these will impact the intended goal of gene delivery. Here, we provide an overview of known interactions of the AAV genome with viral and cellular proteins involved in its amplification, packaging, and expression. Further appreciation of how the AAV genome interacts with host factors will enhance how this simple virus can be harnessed for an array of vector purposes that benefit human health.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Host Microbial Interactions , Transduction, Genetic , Virus Replication , Animals , Gene Transfer Techniques , Genome, Viral , Helper Viruses/physiology , Humans
7.
Hum Gene Ther ; 30(12): 1449-1460, 2019 12.
Article in English | MEDLINE | ID: mdl-31530236

ABSTRACT

Adeno-associated viruses (AAVs) have been employed successfully as gene therapy vectors in treating various genetic diseases for almost two decades. However, transgene packaging is usually imperfect, and developing a rapid and accurate method for measuring the proportion of DNA encapsidation is an important step for improving the downstream process of large scale vector production. In this study, we used two-dimensional class averages and three-dimensional classes, intermediate outputs in the single particle cryo-electron microscopy (cryo-EM) image reconstruction pipeline, to determine the proportion of DNA-packaged and empty capsid populations. Two different preparations of AAV3 were analyzed to estimate the minimum number of particles required to be sampled by cryo-EM in order for robust calculation of the proportion of the full versus empty capsids in any given sample. Cost analysis applied to the minimum amount of data required for a valid ratio suggests that cryo-EM is an effective approach to analyze vector preparations.


Subject(s)
Capsid Proteins/ultrastructure , Capsid/ultrastructure , Cryoelectron Microscopy , Dependovirus/ultrastructure , Capsid Proteins/genetics , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Virion/genetics , Virion/ultrastructure
8.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30651367

ABSTRACT

The adeno-associated virus (AAV) serves as a broadly used vector system for in vivo gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly.IMPORTANCE Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.


Subject(s)
Capsid Proteins/genetics , Parvovirinae/genetics , Virus Assembly/genetics , Amino Acid Sequence , Amino Acids , Capsid/virology , Cell Line , Cell Nucleus/genetics , Cell Nucleus/virology , Dependovirus , Genetic Vectors/genetics , HEK293 Cells , Humans , Protein Transport/genetics , Virion/genetics
9.
Cell Rep ; 23(6): 1817-1830, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742436

ABSTRACT

The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.


Subject(s)
Capsid Proteins/metabolism , Dependovirus/physiology , Virus Assembly , Amino Acid Motifs , Capsid Proteins/chemistry , Dependovirus/pathogenicity , Dependovirus/ultrastructure , Gain of Function Mutation , HEK293 Cells , Humans , Models, Molecular , Phenotype , Phylogeny , Protein Binding , Protein Multimerization , Protein Stability , Serotyping , Virion/pathogenicity , Virion/ultrastructure
10.
Mol Ther ; 25(6): 1375-1386, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28427840

ABSTRACT

Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.


Subject(s)
Dependovirus , Genetic Vectors/standards , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Dependovirus/isolation & purification , Dependovirus/physiology , Genetic Vectors/isolation & purification , Humans , Mutation , Protein Stability , Reproducibility of Results , Spectrometry, Fluorescence , Structure-Activity Relationship , Thermodynamics
11.
Cell Rep ; 12(6): 1056-68, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26235624

ABSTRACT

Adeno-associated virus (AAV) vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAVs, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In-silico-derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Genetic Therapy , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...