Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 410-420, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38805246

ABSTRACT

The detection of specific biological macromolecules in cryogenic electron tomography data is frequently approached by applying cross-correlation-based 3D template matching. To reduce computational cost and noise, high binning is used to aggregate voxels before template matching. This remains a prevalent practice in both practical applications and methods development. Here, the relation between template size, shape and angular sampling is systematically evaluated to identify ribosomes in a ground-truth annotated data set. It is shown that at the commonly used binning, a detailed subtomogram average, a sphere and a heart emoji result in near-identical performance. These findings indicate that with current template-matching practices macromolecules can only be detected with high precision if their shape and size are sufficiently different from the background. Using theoretical considerations, the experimental results are rationalized and it is discussed why primarily low-frequency information remains at high binning and that template matching fails to be accurate because similarly shaped and sized macromolecules have similar low-frequency spectra. These challenges are discussed and potential enhancements for future template-matching methodologies are proposed.


Subject(s)
Electron Microscope Tomography , Ribosomes , Electron Microscope Tomography/methods , Ribosomes/ultrastructure , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Macromolecular Substances/chemistry
2.
J Struct Biol ; 216(2): 108067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38367824

ABSTRACT

Cellular cryo-electron tomography (cryo-ET) has emerged as a key method to unravel the spatial and structural complexity of cells in their near-native state at unprecedented molecular resolution. To enable quantitative analysis of the complex shapes and morphologies of lipid membranes, the noisy three-dimensional (3D) volumes must be segmented. Despite recent advances, this task often requires considerable user intervention to curate the resulting segmentations. Here, we present ColabSeg, a Python-based tool for processing, visualizing, editing, and fitting membrane segmentations from cryo-ET data for downstream analysis. ColabSeg makes many well-established algorithms for point-cloud processing easily available to the broad community of structural biologists for applications in cryo-ET through its graphical user interface (GUI). We demonstrate the usefulness of the tool with a range of use cases and biological examples. Finally, for a large Mycoplasma pneumoniae dataset of 50 tomograms, we show how ColabSeg enables high-throughput membrane segmentation, which can be used as valuable training data for fully automated convolutional neural network (CNN)-based segmentation.


Subject(s)
Algorithms , Cryoelectron Microscopy , Electron Microscope Tomography , Software , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Cell Membrane/ultrastructure , Mycoplasma pneumoniae/ultrastructure , User-Computer Interface , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL