Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Evolution ; 77(6): 1289-1302, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36848265

ABSTRACT

Sexual selection and sexual antagonism are important drivers of eco-evolutionary processes. The evolution of traits shaped by these processes depends on their genetic architecture, which remains poorly studied. Here, implementing a quantitative genetics approach using diallel crosses of the bulb mite, Rhizoglyphus robini, we investigated the genetic variance that underlies a sexually selected weapon that is dimorphic among males and female fecundity. Previous studies indicated that a negative genetic correlation between these two traits likely exists. We found male morph showed considerable additive genetic variance, which is unlikely to be explained solely by mutation-selection balance, indicating the likely presence of large-effect loci. However, a significant magnitude of inbreeding depression also indicates that morph expression is likely to be condition-dependent to some degree and that deleterious recessives can simultaneously contribute to morph expression. Female fecundity also showed a high degree of inbreeding depression, but the variance in female fecundity was mostly explained by epistatic effects, with very little contribution from additive effects. We found no significant genetic correlation, nor any evidence for dominance reversal, between male morph and female fecundity. The complex genetic architecture underlying male morph and female fecundity in this system has important implications for our understanding of the evolutionary interplay between purifying selection and sexually antagonistic selection.


Subject(s)
Acaridae , Mites , Animals , Female , Male , Mutation , Mites/genetics , Phenotype , Selection, Genetic
2.
Evol Lett ; 5(4): 328-343, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367659

ABSTRACT

Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.

3.
Proc Natl Acad Sci U S A ; 117(38): 23317-23322, 2020 09 22.
Article in English | MEDLINE | ID: mdl-31611381

ABSTRACT

Social experience is an important predictor of disease susceptibility and survival in humans and other social mammals. Chronic social stress is thought to generate a proinflammatory state characterized by elevated antibacterial defenses and reduced investment in antiviral defense. Here we manipulated long-term social status in female rhesus macaques to show that social subordination alters the gene expression response to ex vivo bacterial and viral challenge. As predicted by current models, bacterial lipopolysaccharide polarizes the immune response such that low status corresponds to higher expression of genes in NF-κB-dependent proinflammatory pathways and lower expression of genes involved in the antiviral response and type I IFN signaling. Counter to predictions, however, low status drives more exaggerated expression of both NF-κB- and IFN-associated genes after cells are exposed to the viral mimic Gardiquimod. Status-driven gene expression patterns are linked not only to social status at the time of sampling, but also to social history (i.e., past social status), especially in unstimulated cells. However, for a subset of genes, we observed interaction effects in which females who fell in rank were more strongly affected by current social status than those who climbed the social hierarchy. Taken together, our results indicate that the effects of social status on immune cell gene expression depend on pathogen exposure, pathogen type, and social history-in support of social experience-mediated biological embedding in adulthood, even in the conventionally memory-less innate immune system.


Subject(s)
Bacterial Infections/veterinary , Primate Diseases/genetics , Primate Diseases/psychology , Virus Diseases/veterinary , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/psychology , Behavior, Animal , Female , Gene Expression , Gene Expression Regulation , Hierarchy, Social , Immunity, Innate , Macaca mulatta/genetics , Macaca mulatta/immunology , Macaca mulatta/psychology , Male , NF-kappa B/genetics , NF-kappa B/immunology , Primate Diseases/immunology , Primate Diseases/microbiology , Social Stigma , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/psychology
4.
Malar J ; 18(1): 205, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234875

ABSTRACT

BACKGROUND: Heterogeneity in the immune response to parasite infection is mediated in part by differences in host genetics, gender, and age group. In infants and young children, ongoing immunological maturation often results in increased susceptibility to infection and variable responses to drug treatment, increasing the risk of complications. Even though significant age-associated effects on host cytokine responses to Plasmodium falciparum infection have been identified, age-associated effects on uncomplicated malaria infection and anti-malarial treatment remain poorly understood. METHODS: In samples of whole blood from a cohort of naturally infected malaria-positive individuals with non-severe falciparum malaria in Malawi (n = 63 total; 34 infants and young children < 2 years old, 29 adults > 18 years old), blood cytokine levels and monocyte and dendritic cell frequencies were assessed at two timepoints: acute infection, and 4 weeks post anti-malarial treatment. The effects of age group, gender, and timepoint were modeled, and the role of these factors on infection and treatment outcomes was evaluated. RESULTS: Regardless of treatment timepoint, in this population age was significantly associated with overall blood haemoglobin, which was higher in adults, and plasma nitric oxide metabolites, IL-10, and TNF levels, which were higher in young children. There was a significant effect of age on the haemoglobin treatment response, whereby after treatment, levels increased in young children and decreased in adults. Furthermore, there were significant age-associated effects on treatment response for overall parasite load, IFN-γ, and IL-12(p40), and these effects were gender-dependent. Significant age effects on the overall levels and treatment response of myeloid dendritic cell frequencies were observed. In addition, within each age group, results showed continuous age effects on gametocyte levels (Pfs16), TNF, and nitric oxide metabolites. CONCLUSIONS: In a clinical study of young children and adults experiencing natural falciparum malaria infection and receiving anti-malarial treatment, age-associated signatures of infection and treatment responses in peripheral blood were identified. This study describes host markers that may indicate, and potentially contribute to, differential post-treatment outcomes for malaria in young children versus adults.


Subject(s)
Antimalarials/therapeutic use , Biomarkers/blood , Malaria, Falciparum/blood , Malaria, Falciparum/drug therapy , Models, Biological , Adult , Age Factors , Blood Cell Count , Cytokines/blood , Female , Humans , Infant , Malawi , Male , Parasite Load , Sex Factors
5.
G3 (Bethesda) ; 9(5): 1613-1622, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30877080

ABSTRACT

Reproductive success in the eight founder strains of the Collaborative Cross (CC) was measured using a diallel-mating scheme. Over a 48-month period we generated 4,448 litters, and provided 24,782 weaned pups for use in 16 different published experiments. We identified factors that affect the average litter size in a cross by estimating the overall contribution of parent-of-origin, heterosis, inbred, and epistatic effects using a Bayesian zero-truncated overdispersed Poisson mixed model. The phenotypic variance of litter size has a substantial contribution (82%) from unexplained and environmental sources, but no detectable effect of seasonality. Most of the explained variance was due to additive effects (9.2%) and parental sex (maternal vs. paternal strain; 5.8%), with epistasis accounting for 3.4%. Within the parental effects, the effect of the dam's strain explained more than the sire's strain (13.2% vs. 1.8%), and the dam's strain effects account for 74.2% of total variation explained. Dams from strains C57BL/6J and NOD/ShiLtJ increased the expected litter size by a mean of 1.66 and 1.79 pups, whereas dams from strains WSB/EiJ, PWK/PhJ, and CAST/EiJ reduced expected litter size by a mean of 1.51, 0.81, and 0.90 pups. Finally, there was no strong evidence for strain-specific effects on sex ratio distortion. Overall, these results demonstrate that strains vary substantially in their reproductive ability depending on their genetic background, and that litter size is largely determined by dam's strain rather than sire's strain effects, as expected. This analysis adds to our understanding of factors that influence litter size in mammals, and also helps to explain breeding successes and failures in the extinct lines and surviving CC strains.


Subject(s)
Alleles , Animals, Genetically Modified , Collaborative Cross Mice/genetics , Litter Size/genetics , Maternal Inheritance , Algorithms , Animals , Crosses, Genetic , Environment , Gene-Environment Interaction , Genetic Testing , Mice , Mice, Inbred Strains , Models, Genetic , Phenotype , Sex Ratio , Species Specificity
6.
G3 (Bethesda) ; 8(2): 411-426, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29187419

ABSTRACT

Crop establishment in carrot (Daucus carota L.) is limited by slow seedling growth and delayed canopy closure, resulting in high management costs for weed control. Varieties with improved growth habit (i.e., larger canopy and increased shoot biomass) may help mitigate weed control, but the underlying genetics of these traits in carrot is unknown. This project used a diallel mating design coupled with recent Bayesian analytical methods to determine the genetic basis of carrot shoot growth. Six diverse carrot inbred lines with variable shoot size were crossed in WI in 2014. F1 hybrids, reciprocal crosses, and parental selfs were grown in a randomized complete block design with two blocks in WI (2015) and CA (2015, 2016). Measurements included canopy height, canopy width, shoot biomass, and root biomass. General and specific combining abilities were estimated using Griffing's Model I, which is a common analysis for plant breeding experiments. In parallel, additive, inbred, cross-specific, and maternal effects were estimated from a Bayesian mixed model, which is robust to dealing with data imbalance and outliers. Both additive and nonadditive effects significantly influenced shoot traits, with nonadditive effects playing a larger role early in the growing season, when weed control is most critical. Results suggest the presence of heritable variation and thus potential for improvement of these phenotypes in carrot. In addition, results present evidence of heterosis for root biomass, which is a major component of carrot yield.


Subject(s)
Daucus carota/genetics , Hybrid Vigor/genetics , Plant Breeding/methods , Plant Shoots/genetics , Bayes Theorem , Biomass , Daucus carota/classification , Daucus carota/growth & development , Genotype , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/growth & development , Species Specificity
7.
G3 (Bethesda) ; 8(2): 427-445, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29187420

ABSTRACT

Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.


Subject(s)
Bayes Theorem , Genetic Predisposition to Disease/genetics , Myxovirus Resistance Proteins/genetics , Orthomyxoviridae Infections/genetics , Animals , Disease Models, Animal , Haplotypes , Humans , Influenza A virus/physiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Inbred Strains , Orthomyxoviridae Infections/virology , Phenotype , Species Specificity
8.
Methods Mol Biol ; 1488: 579-596, 2017.
Article in English | MEDLINE | ID: mdl-27933545

ABSTRACT

An increasing body of evidence highlights the role of host genetic variation in driving susceptibility to severe disease following pathogen infection. In order to fully appreciate the importance of host genetics on infection susceptibility and resulting disease, genetically variable experimental model systems should be employed. These systems allow for the identification, characterization, and mechanistic dissection of genetic variants that cause differential disease responses. Herein we discuss application of the Collaborative Cross (CC) panel of recombinant inbred strains to study viral pathogenesis, focusing on practical considerations for experimental design, assessment and analysis of disease responses within the CC, as well as some of the resources developed for the CC. Although the focus of this chapter is on viral pathogenesis, many of the methods presented within are applicable to studies of other pathogens, as well as to case-control designs in genetically diverse populations.


Subject(s)
Communicable Diseases/etiology , Crosses, Genetic , Genetic Predisposition to Disease , Mice, Inbred Strains , Animals , Chromosome Mapping , Computational Biology/methods , Genetic Association Studies/methods , Genetic Variation , Mice , Quantitative Trait Loci , Recombination, Genetic , Software , Web Browser
9.
Infect Immun ; 81(8): 2882-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716612

ABSTRACT

The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.


Subject(s)
Chimera/genetics , Malaria Vaccines/immunology , Plasmodium berghei/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Chimera/immunology , Fluorescent Antibody Technique, Indirect , Mice , Plasmodium berghei/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Reverse Transcriptase Polymerase Chain Reaction , Transfection
10.
PLoS One ; 3(12): e4064, 2008.
Article in English | MEDLINE | ID: mdl-19112497

ABSTRACT

The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFkappaB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFkappaB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFkappaB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKgamma/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFkappaB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function.


Subject(s)
Interleukin-1/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , RANK Ligand/metabolism , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , DNA Gyrase/chemistry , Humans , Lysine/chemistry , Mice , Osteoclasts/metabolism , Protein Structure, Tertiary , TNF Receptor-Associated Factor 6/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...