Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Hum Mol Genet ; 17(15): 2310-9, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18424447

ABSTRACT

Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with amyotrophic lateral sclerosis (ALS). Among more than 100 ALS-associated SOD1 mutations, premature termination codon (PTC) mutations exclusively occur in exon 5, the last exon of SOD1. The molecular basis of ALS-associated toxicity of the mutant SOD1 is not fully understood. Here, we show that nonsense-mediated mRNA decay (NMD) underlies clearance of mutant mRNA with a PTC in the non-terminal exons. To further define the crucial ALS-associated SOD1 fragments, we designed and tested an exon-fusion approach using an artificial transgene SOD1(T116X) that harbors a PTC in exon 4. We found that the SOD1(T116X) transgene with a fused exon could escape NMD in cellular models. We generated a transgenic mouse model that overexpresses SOD1(T116X). This mouse model developed ALS-like phenotype and pathology. Thus, our data have demonstrated that a 'mini-SOD1' of only 115 amino acids is sufficient to cause ALS. This is the smallest ALS-causing SOD1 molecule currently defined. This proof of principle result suggests that the exon-fusion approach may have potential not only to further define a shorter ALS-associated SOD1 fragment, thus providing a molecular target for designing rational therapy, but also to dissect toxicities of other proteins encoded by genes of multiple exons through a 'gain of function' mechanism.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Artificial Gene Fusion/methods , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Amino Acid Sequence/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Codon, Nonsense , DNA Mutational Analysis , Disease Models, Animal , Exons , Humans , Mice , Mice, Transgenic , RNA Stability , RNA, Messenger/metabolism , Sequence Deletion , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL