Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 107(2): 450-461, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34570185

ABSTRACT

CONTEXT: Thyroid hormone (TH) is crucial for the adaptation to cold. OBJECTIVE: To evaluate the effect of hyperthyroidism on resting energy expenditure (REE), cold-induced thermogenesis (CIT) and changes in body composition and weight. METHODS: This was a prospective cohort study at the endocrine outpatient clinic of a tertiary referral center. Eighteen patients with overt hyperthyroidism were included. We measured REE during hyperthyroidism, after restoring euthyroid TH levels and after 3 months of normal thyroid function. In 14 of the 18 patients, energy expenditure (EE) was measured before and after a mild cold exposure of 2 hours and CIT was the difference between EEcold and EEwarm. Skin temperatures at 8 positions were recorded during the study visits. Body composition was assessed by dual X-ray absorption. RESULTS: Free thyroxine (fT4) and free triiodothyronine (fT3) decreased significantly over time (fT4, P = .0003; fT3, P = .0001). REE corrected for lean body mass (LBM) decreased from 42 ±â€…6.7 kcal/24 hour/kg LBM in the hyperthyroid to 33 ±â€…4.4 kcal/24 hour/kg LBM (-21%, P < .0001 vs hyperthyroid) in the euthyroid state and 3 months later to 33 ±â€…5.2 kcal/24 hour/kg LBM (-21%, P = .0022 vs hyperthyroid, overall P < .0001). fT4 (P = .0001) and fT3 (P < 0.0001) were predictors of REE. CIT did not change from the hyperthyroid to the euthyroid state (P = .96). Hyperthyroidism led to increased skin temperature at warm ambient conditions but did not alter core body temperature, nor skin temperature after cold exposure. Weight regain and body composition were not influenced by REE and CIT during the hyperthyroid state. CONCLUSION: CIT is not increased in patients with overt hyperthyroidism.


Subject(s)
Basal Metabolism/physiology , Hyperthyroidism/metabolism , Thermogenesis , Thyroxine/metabolism , Triiodothyronine/metabolism , Adrenergic Antagonists/therapeutic use , Adult , Aged , Body Composition , Cold Temperature/adverse effects , Female , Humans , Hyperthyroidism/blood , Hyperthyroidism/drug therapy , Male , Middle Aged , Prospective Studies , Thyroid Function Tests , Thyroxine/blood , Triiodothyronine/blood , Young Adult
2.
J Magn Reson Imaging ; 50(4): 1160-1168, 2019 10.
Article in English | MEDLINE | ID: mdl-30945366

ABSTRACT

BACKGROUND: Brown adipose tissue (BAT) has been proposed as a target to treat obesity and metabolic disease. Currently, 18 F-Fluordeoxyglucose positron emission tomography (FDG-PET) is the standard for BAT-imaging. MRI might be a promising alternative, as it is not associated with ionizing radiation, offers a high resolution, and allows to discriminate different types of soft tissue. PURPOSE: We sought to evaluate whether supraclavicular BAT (scBAT) volume, fat-fraction (FF), and relaxation rate (R2*) determined by MRI can predict its metabolic activity, which was assessed by measurement of cold-induced thermogenesis (CIT). STUDY TYPE: Prospective cohort study. SUBJECTS: Twenty healthy volunteers (9 female, 11 male), aged 18-47 years, with a body mass index (BMI) of 18-30 kg/m2 . FIELD STRENGTH/SEQUENCE: Multiecho gradient MRI for water-fat separation was used on a 3T device to measure the FF and T2 * of BAT. ASSESSMENT: Prior to imaging, CIT was determined by measuring the difference in energy expenditure (EE) during warm conditions and after cold exposure. Volume, FF, and R2* of scBAT was assessed and compared with CIT. In 11 participants, two MRI sessions with and without cold exposure were performed and the dynamic changes in FF and R2* assessed. STATISTICAL TESTS: Linear regression was used to evaluate the relation of MRI measurements and CIT. P-values below 0.05 were considered significant; data are given as mean ± SD. RESULTS: R2* correlated positively with CIT (r = 0.64, R2 = 0.41 P = 0.0041). Volume and FF did not correlate significantly with CIT. After mild cold exposure EE increased significantly (P = 0.0002), with a mean CIT of 147 kcal/day. The mean volume of scBAT was 72.4 ± 38.4 ml, mean FF was 74.3 ± 5.8%, and the mean R2* (1/T2 *) was 33.5 ± 12.7 s-1 . DATA CONCLUSION: R2* of human scBAT can be used to estimate CIT. FF of scBAT was not associated with CIT. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1160-1168.


Subject(s)
Adipose Tissue, Brown/anatomy & histology , Adipose Tissue, Brown/physiology , Magnetic Resonance Imaging/methods , Thermogenesis/physiology , Adolescent , Adult , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Reference Values , Young Adult
3.
Front Physiol ; 9: 1184, 2018.
Article in English | MEDLINE | ID: mdl-30190681

ABSTRACT

Objective: Energy expenditure (EE) increases in response to cold exposure, which is called cold induced thermogenesis (CIT). Brown adipose tissue (BAT) has been shown to contribute significantly to CIT in human adults. BAT activity and CIT are acutely influenced by ambient temperature. In the present study, we investigated the long-term effect of seasonal temperature variation on human CIT. Materials and Methods: We measured CIT in 56 healthy volunteers by indirect calorimetry. CIT was determined as difference between EE during warm conditions (EEwarm) and after a defined cold stimulus (EEcold). We recorded skin temperatures at eleven anatomically predefined locations, including the supraclavicular region, which is adjacent to the main human BAT depot. We analyzed the relation of EE, CIT and skin temperatures to the daily minimum, maximum and mean outdoor temperature averaged over 7 or 30 days, respectively, prior to the corresponding study visit by linear regression. Results: We observed a significant inverse correlation between outdoor temperatures and EEcold and CIT, respectively, while EEwarm was not influenced. The daily maximum temperature averaged over 7 days correlated best with EEcold (R2 = 0.123, p = 0.008) and CIT (R2 = 0.200, p = 0.0005). The mean skin temperatures before and after cold exposure were not related to outdoor temperatures. However, the difference between supraclavicular and parasternal skin temperature after cold exposure was inversely related to the average maximum temperature during the preceding 7 days (R2 = 0.07575, p = 0.0221). Conclusion: CIT is significantly related to outdoor temperatures indicating dynamic adaption of thermogenesis and BAT activity to environmental stimuli in adult humans. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier NCT02682706.

SELECTION OF CITATIONS
SEARCH DETAIL