Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 6(5): 344-357, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36254258

ABSTRACT

With the rise of affordable next-generation sequencing technology, introgression-or the exchange of genetic materials between taxa-has become widely perceived to be a ubiquitous phenomenon in nature. Although this claim is supported by several keystone studies, no thorough assessment of the frequency of introgression across eukaryotes in nature has been performed to date. In this manuscript, we aim to address this knowledge gap by examining patterns of introgression across eukaryotes. We collated a single statistic, Patterson's D, which can be used as a test for introgression across 123 studies to further assess how taxonomic group, divergence time, and sequencing technology influence reports of introgression. Overall, introgression has mostly been measured in plants and vertebrates, with less attention given to the rest of the Eukaryotes. We find that the most frequently used metrics to detect introgression are difficult to compare across studies and even more so across biological systems due to differences in study effort, reporting standards, and methodology. Nonetheless, our analyses reveal several intriguing patterns, including the observation that differences in sequencing technologies may bias values of Patterson's D and that introgression may differ throughout the course of the speciation process. Together, these results suggest the need for a unified approach to quantifying introgression in natural communities and highlight important areas of future research that can be better assessed once this unified approach is met.

2.
Fungal Genet Biol ; 158: 103654, 2022 01.
Article in English | MEDLINE | ID: mdl-34942368

ABSTRACT

Histoplasma, a genus of dimorphic fungi, is the etiological agent of histoplasmosis, a pulmonary disease widespread across the globe. Whole genome sequencing has revealed that the genus harbors a previously unrecognized diversity of cryptic species. To date, studies have focused on Histoplasma isolates collected in the Americas with little knowledge of the genomic variation from other localities. In this report, we report the existence of a well-differentiated lineage of Histoplasma occurring in the Indian subcontinent. The group is differentiated enough to satisfy the requirements of a phylogenetic species, as it shows extensive genetic differentiation along the whole genome and has little evidence of gene exchange with other Histoplasma species. Next, we leverage this genetic differentiation to identify genetic changes that are unique to this group and that have putatively evolved through rapid positive selection. We found that none of the previously known virulence factors have evolved rapidly in the Indian lineage but find evidence of strong signatures of selection on other alleles potentially involved in clinically-important phenotypes. Our work serves as an example of the importance of correctly identifying species boundaries to understand the extent of selection in the evolution of pathogenic lineages. IMPORTANCE: Whole genome sequencing has revolutionized our understanding of microbial diversity, including human pathogens. In the case of fungal pathogens, a limiting factor in understanding the extent of their genetic diversity has been the lack of systematic sampling. In this piece, we show the results of a collection in the Indian subcontinent of the pathogenic fungus Histoplasma, the causal agent of a systemic mycosis. We find that Indian samples of Histoplasma form a distinct clade which is highly differentiated from other Histoplasma species. We also show that the genome of this lineage shows unique signals of natural selection. This work exemplifies how the combination of a robust sampling along with population genetics, and phylogenetics can reveal the precise genetic changes that differentiate lineages of fungal pathogens.


Subject(s)
Histoplasma , Histoplasmosis , Genomics , Histoplasma/genetics , Humans , Phylogeny , Whole Genome Sequencing
3.
Emerg Microbes Infect ; 9(1): 2515-2525, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33155518

ABSTRACT

Sporotrichosis is a subcutaneous infection caused by fungi from the genus Sporothrix. It is transmitted by inoculation of infective particles found in plant-contaminated material or diseased animals, characterizing the classic sapronotic and emerging zoonotic transmission, respectively. Since 1998, southeastern Brazil has experienced a zoonotic sporotrichosis epidemic caused by S. brasiliensis, centred in the state of Rio de Janeiro. Our observation of feline sporotrichosis cases in Brasília (Midwestern Brazil), around 900 km away from Rio de Janeiro, led us to question whether the epidemic caused by S. brasiliensis has spread from the epicentre in Rio de Janeiro, emerged independently in the two locations, or if the disease has been present and unrecognized in Midwestern Brazil. A retrospective analysis of 91 human and 4 animal cases from Brasília, ranging from 1993 to 2018, suggests the occurrence of both sapronotic and zoonotic transmission. Molecular typing of the calmodulin locus identified S. schenckii as the agent in two animals and all seven human patients from which we were able to recover clinical isolates. In two other animals, the disease was caused by S. brasiliensis. Whole-genome sequence typing of seven Sporothrix spp. strains from Brasília and Rio de Janeiro suggests that S. brasiliensis isolates from Brasília are genetically distinct from those obtained at the epicentre of the outbreak in Rio de Janeiro, both in phylogenomic and population genomic analyses. The two S. brasiliensis populations seem to have separated between 2.2 and 3.1 million years ago, indicating independent outbreaks or that the zoonotic S. brasiliensis outbreak might have started earlier and be more widespread in South America than previously recognized.


Subject(s)
Calmodulin/genetics , Sporothrix/classification , Sporotrichosis/epidemiology , Whole Genome Sequencing/methods , Zoonoses/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Brazil/epidemiology , Cats , Child , Child, Preschool , Cross-Sectional Studies , Dogs , Evolution, Molecular , Female , Genome, Fungal , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Molecular Typing , Phylogeny , Sporothrix/genetics , Sporothrix/isolation & purification , Sporotrichosis/microbiology , Young Adult , Zoonoses/epidemiology
4.
Genetics ; 215(4): 1117-1132, 2020 08.
Article in English | MEDLINE | ID: mdl-32546497

ABSTRACT

Maternally transmitted Wolbachia bacteria infect about half of all insect species. They usually show imperfect maternal transmission and often produce cytoplasmic incompatibility (CI). Irrespective of CI, Wolbachia frequencies tend to increase when rare only if they benefit host fitness. Several Wolbachia, including wMel that infects Drosophila melanogaster, cause weak or no CI and persist at intermediate frequencies. On the island of São Tomé off West Africa, the frequencies of wMel-like Wolbachia infecting Drosophila yakuba (wYak) and Drosophila santomea (wSan) fluctuate, and the contributions of imperfect maternal transmission, fitness effects, and CI to these fluctuations are unknown. We demonstrate spatial variation in wYak frequency and transmission on São Tomé. Concurrent field estimates of imperfect maternal transmission do not predict spatial variation in wYak frequencies, which are highest at high altitudes where maternal transmission is the most imperfect. Genomic and genetic analyses provide little support for D. yakuba effects on wYak transmission. Instead, rearing at cool temperatures reduces wYak titer and increases imperfect transmission to levels observed on São Tomé. Using mathematical models of Wolbachia frequency dynamics and equilibria, we infer that temporally variable imperfect transmission or spatially variable effects on host fitness and reproduction are required to explain wYak frequencies. In contrast, spatially stable wSan frequencies are plausibly explained by imperfect transmission, modest fitness effects, and weak CI. Our results provide insight into causes of wMel-like frequency variation in divergent hosts. Understanding this variation is crucial to explain Wolbachia spread and to improve wMel biocontrol of human disease in transinfected mosquito systems.


Subject(s)
Drosophila/microbiology , Environmental Exposure/analysis , Gene-Environment Interaction , Gram-Negative Bacterial Infections/transmission , Host-Pathogen Interactions , Wolbachia/pathogenicity , Animals , Drosophila/classification , Drosophila/genetics , Drosophila/growth & development , Female , Gram-Negative Bacterial Infections/microbiology , Male
5.
mBio ; 11(6)2020 12 22.
Article in English | MEDLINE | ID: mdl-33443110

ABSTRACT

The fungus Paracoccidioides is a prevalent human pathogen endemic to South America. The genus is composed of five species. In this report, we use 37 whole-genome sequences to study the allocation of genetic variation in Paracoccidioides We tested three genome-wide predictions of advanced speciation, namely, that all species should be reciprocally monophyletic, that species pairs should be highly differentiated along the whole genome, and that there should be low rates of interspecific gene exchange. We find support for these three hypotheses. Species pairs with older divergences show no evidence of gene exchange, while more recently diverged species pairs show evidence of modest rates of introgression. Our results indicate that as divergence progresses, species boundaries become less porous among Paracoccidioides species. Our results suggest that species in Paracoccidioides are at different stages along the divergence continuum.IMPORTANCEParacoccidioides is the causal agent of a systemic mycosis in Latin America. Most of the inference of the evolutionary history of Paracoccidioides has used only a few molecular markers. In this report, we evaluate the extent of genome divergence among Paracoccidioides species and study the possibility of interspecific gene exchange. We find that all species are highly differentiated. We also find that the amount of gene flow between species is low and in some cases is even completely absent in spite of geographic overlap. Our study constitutes a systematic effort to identify species boundaries in fungal pathogens and to determine the extent of gene exchange among fungal species.


Subject(s)
Gene Flow , Genome, Fungal , Paracoccidioides/classification , Paracoccidioides/genetics , Evolution, Molecular , Paracoccidioides/pathogenicity , Phylogeny , Sequence Analysis, DNA , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...