Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 30(3): 298-307, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38164606

ABSTRACT

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Subject(s)
Boron Compounds , Peptides , RNA, Transfer, Amino Acyl , RNA, Transfer, Amino Acyl/chemistry , Peptides/metabolism , RNA, Transfer/metabolism , Electrophoresis, Polyacrylamide Gel , Protein Biosynthesis
2.
Article in English | MEDLINE | ID: mdl-33593838

ABSTRACT

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

3.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546783

ABSTRACT

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Subject(s)
Anthraquinones , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Protein Biosynthesis , Anti-Bacterial Agents/pharmacology , Codon, Terminator/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Ribosomes/metabolism , Protein Biosynthesis/drug effects , Anthraquinones/pharmacology
4.
Biochimie ; 206: 150-153, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36346253

ABSTRACT

The aromatic polyketides tetracenomycins were recently found to be potent inhibitors of protein synthesis. Their binding site is located in a unique locus within the tunnel of the large ribosomal subunit. Here we report the isolation and structure elucidation of a novel natural tetracenomycin congener - O4-Me-tetracenomycin C (O4-Me-TcmC). This compound is isomeric to tetracenomycin X (TcmX), however, in contrast to TcmX, O4-Me-TcmC exhibited no antimicrobial activity and was unable to inhibit protein synthesis in vitro. Structural alignment of tetracenomycins to the binding locus from cryo-EM TcmX-70S ribosome data revealed the crucial role of the 4-hydroxyl group. These findings are important for further development of semi-synthetic tetracenomycins as potential antibacterials.


Subject(s)
Anti-Bacterial Agents , Protein Biosynthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ribosomes , Binding Sites
5.
Int J Mol Sci ; 23(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35742896

ABSTRACT

In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Colicins , Escherichia coli Proteins/metabolism , Colicins/genetics , Colicins/pharmacology , Ecosystem , Escherichia coli/genetics , Operon , Plasmids/genetics , RNA, Ribosomal, 16S
6.
Proc Natl Acad Sci U S A ; 119(19): e2114214119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500116

ABSTRACT

Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.


Subject(s)
Anti-Bacterial Agents , Peptide Elongation Factor G , Anti-Bacterial Agents/metabolism , Fusidic Acid/pharmacology , Humans , Oligopeptides , Peptide Elongation Factor G/metabolism , Ribosomes/metabolism , Translocation, Genetic
7.
Biochimie ; 192: 63-71, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34592388

ABSTRACT

The aromatic polyketide tetracenomycin X (TcmX) was recently found to be a potent inhibitor of protein synthesis; its binding site is located in a unique locus within the tunnel of the large ribosomal subunit. The distinct mode of action makes this relatively narrow class of aromatic polyketides promising for drug development in the quest to prevent the spread of drug-resistant pathogens. Here we report the isolation and structure elucidation of a novel natural tetracenomycin X congener - 6-hydroxytetraceonomycin X (6-OH-TcmX). In contrast to TcmX, 6-OH-TcmX exhibited lower antimicrobial and cytotoxic activity, but comparable in vitro protein synthesis inhibition ability. A survey on spectral properties of tetracenomycins revealed profound differences in both UV-absorption and fluorescence spectra between TcmX and 6-OH-TcmX, suggesting a significant influence of 6-hydroxylation on the tetracenomycin X chromophore. Nonetheless, characteristic spectral properties of tetracenomycins make them suitable candidates for semi-synthetic drug development (e.g., for targeted delivery, chemical biology, or cell imaging).


Subject(s)
Amycolatopsis/chemistry , Anti-Bacterial Agents/chemistry , A549 Cells , Amycolatopsis/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , HEK293 Cells , Humans , MCF-7 Cells , Molecular Structure , Naphthacenes/chemistry , Naphthacenes/metabolism , Naphthacenes/pharmacology , Nuclear Magnetic Resonance, Biomolecular
8.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Article in English | MEDLINE | ID: mdl-32601485

ABSTRACT

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Subject(s)
Amycolatopsis/drug effects , Gene Expression Regulation, Bacterial/drug effects , Amycolatopsis/genetics , Amycolatopsis/metabolism , Binding Sites , Cryoelectron Microscopy , Drug Resistance, Bacterial , Escherichia coli , HEK293 Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Mutation , Naphthacenes/chemistry , Naphthacenes/pharmacology , Protein Binding , Protein Biosynthesis/drug effects , Protein Conformation , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...