Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL