Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Eur J Cell Biol ; 103(2): 151394, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38340500

ABSTRACT

The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.

2.
Nat Cell Biol ; 25(12): 1774-1786, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957325

ABSTRACT

The intricate orchestration of enzymatic activities involving nicotinamide adenine dinucleotide (NAD+) is essential for maintaining metabolic homeostasis and preserving genomic integrity. As a co-enzyme, NAD+ plays a key role in regulating metabolic pathways, such as glycolysis and Kreb's cycle. ADP-ribosyltransferases (PARPs) and sirtuins rely on NAD+ to mediate post-translational modifications of target proteins. The activation of PARP1 in response to DNA breaks leads to rapid depletion of cellular NAD+ compromising cell viability. Therefore, the levels of NAD+ must be tightly regulated. Here we show that exogenous NAD+, but not its precursors, has a direct effect on mitochondrial activity. Short-term incubation with NAD+ boosts Kreb's cycle and the electron transport chain and enhances pyrimidine biosynthesis. Extended incubation with NAD+ results in depletion of pyrimidines, accumulation of purines, activation of the replication stress response and cell cycle arrest. Moreover, a combination of NAD+ and 5-fluorouridine selectively kills cancer cells that rely on de novo pyrimidine synthesis. We propose an integrated model of how NAD+ regulates nucleotide metabolism, with relevance to healthspan, ageing and cancer therapy.


Subject(s)
Glycolysis , NAD , NAD/metabolism , Metabolic Networks and Pathways , Genomics , DNA Replication
3.
Cell Rep ; 42(1): 111979, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640322

ABSTRACT

The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions. Decreased engaged RNAPII subsequently alters the assembly of the spliceosome complex on chromatin, leading to changes in pre-mRNA splicing. Mechanistically, the S/TQ domain of MDC1 modulates RNAPII-mediated transcription. Upon genotoxic stress, MDC1 promotes the abundance of engaged RNAPII complexes at DNA breaks, thereby stimulating nascent transcription at the damaged sites. Of clinical relevance, cancer cells lacking MDC1 display hypersensitivity to RNAPII inhibitors. Overall, we unveil a role of MDC1 in RNAPII-mediated transcription with potential implications for cancer treatment.


Subject(s)
RNA Polymerase II , RNA Splicing , DNA Damage , RNA Polymerase II/metabolism , Transcription, Genetic , Humans
4.
Nucleic Acids Res ; 50(17): 9948-9965, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36099415

ABSTRACT

Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.


Subject(s)
Lamin Type A/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Progeria , Animals , Chromatin/metabolism , DNA, Mitochondrial/metabolism , Fibroblasts/metabolism , Humans , Lamin Type A/genetics , Mice , Mitochondria/metabolism , NAD/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Progeria/metabolism , Sirtuin 1/genetics
5.
Cell Death Differ ; 29(5): 972-982, 2022 05.
Article in English | MEDLINE | ID: mdl-35444234

ABSTRACT

Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any "mid-life crisis" in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53's many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , DNA Replication , Humans , Neoplasms/genetics , Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Cell Death Differ ; 29(8): 1639-1653, 2022 08.
Article in English | MEDLINE | ID: mdl-35194187

ABSTRACT

Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.


Subject(s)
Cytomegalovirus , DNA Damage , Carcinogenesis/genetics , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Genomic Instability , Humans , Promoter Regions, Genetic , Virus Replication
7.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34793711

ABSTRACT

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Subject(s)
Cellular Senescence , Chromosome Inversion , Chromosomes/ultrastructure , Epithelial-Mesenchymal Transition , Neoplasms/genetics , Oncogenes , Recombination, Genetic , Animals , Bronchi/metabolism , CRISPR-Cas Systems , Cell Cycle , Cell Transformation, Neoplastic , Circadian Rhythm , Computational Biology , Epithelial Cells/metabolism , Flow Cytometry , Genomics , Humans , Karyotyping , Mice , Mice, SCID , Neoplasms/metabolism , Phenotype , Protein Binding , Protein Domains , Senescence-Associated Secretory Phenotype
8.
Nat Commun ; 12(1): 3937, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168151

ABSTRACT

Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.


Subject(s)
DNA Replication , Nuclear Pore Complex Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Cell Survival , DNA Damage , Genomic Instability , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Nuclear Pore Complex Proteins/genetics , Protein Interaction Maps , Proto-Oncogene Proteins/genetics , RNA Transport
9.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Article in English | MEDLINE | ID: mdl-33947663

ABSTRACT

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
APOBEC Deaminases/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Instability , DNA Replication , Female , Humans , Mice
10.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946407

ABSTRACT

Lysosomes, acidic, membrane-bound organelles, are not only the core of the cellular recycling machinery, but they also serve as signaling hubs regulating various metabolic pathways. Lysosomes maintain energy homeostasis and provide pivotal substrates for anabolic processes, such as DNA replication. Every time the cell divides, its genome needs to be correctly duplicated; therefore, DNA replication requires rigorous regulation. Challenges that negatively affect DNA synthesis, such as nucleotide imbalance, result in replication stress with severe consequences for genome integrity. The lysosomal complex mTORC1 is directly involved in the synthesis of purines and pyrimidines to support DNA replication. Numerous drugs have been shown to target lysosomal function, opening an attractive avenue for new treatment strategies against various pathologies, including cancer. In this review, we focus on the interplay between lysosomal function and DNA replication through nucleic acid degradation and nucleotide biosynthesis and how these could be exploited for therapeutic purposes.


Subject(s)
DNA Replication , Lysosomes/metabolism , Animals , Autophagy , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism
11.
Nature ; 592(7856): 799-803, 2021 04.
Article in English | MEDLINE | ID: mdl-33854232

ABSTRACT

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cyclin D/metabolism , Genomic Instability , S Phase , Animals , Cell Line , Cell Proliferation , Checkpoint Kinase 1/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , DNA Replication , Gene Expression Regulation, Developmental , Genes, Tumor Suppressor , Humans , Mice , Mice, Knockout , Synthetic Lethal Mutations
12.
Cell Cycle ; 19(7): 727-741, 2020 04.
Article in English | MEDLINE | ID: mdl-32054408

ABSTRACT

Despite recent progress in research on brain tumors, including identification of cancer stem-like cells (CSCs), little is known about the interplay of stemness with the commonly observed infection by the human cytomegalovirus (HCMV) and the widespread features of replication stress in these malignancies. To shed more light on these outstanding issues, here we combine immunohistochemical analysis of archival clinical specimens from a cohort of 25 human pediatric medulloblastomas, complemented by functional experiments and analytical approaches to examine three medulloblastoma cell lines. In the clinical samples, we find consistent, yet individually variable subsets of CSCs expressing the stem-cell markers CD133 and CD15, and a candidate marker VEGFR2, across the spectrum of endogenous DNA damage (γH2AX), expression of HCMV immediate early and late proteins, proliferation rate (Ki67) or molecular class of MB. Contrary to MB cell lines DAOY and D324, the D283 cells showed pronounced phenotypic features of stemness, associated with enhanced endogenous DNA damage, exceptionally high susceptibility to infection with HCMV, unorthodox signaling pathway response to ionizing radiation and hyperactive response to hydroxyurea-induced replication stress. Notably, single-molecule DNA fiber analysis revealed aberrantly slow replication fork progression, pronounced fork asymmetry and inability to timely recover from drug-induced fork stalling in stem-like D283 cells, all hallmarks of pronounced chronic replication stress and propensity to genomic instability. These findings provide insights into human medulloblastoma stemness phenotypes, with various susceptibilities to infection by HCMV and impact on replication fork (mal)function, with implications for better understanding pathogenesis and responses to treatment in pediatric brain malignancies.Abbreviations: CSC: cancer stem-like cells; FBS: fetal bovine serum; HCMV: human cytomegalovirus; MB: medulloblastoma; MBSC: medulloblastoma stem cells; MOI: multiplicity of infection; PBS: phosphate-buffered saline; RPA: replication protein A; RS: replication stress; SHH: sonic hedgehog; VEGFR2: vascular endothelia growth factor receptor 2.


Subject(s)
Cerebellar Neoplasms/pathology , Cytomegalovirus/metabolism , DNA Replication , Medulloblastoma/pathology , Mutagens/toxicity , Neoplastic Stem Cells/pathology , Viral Proteins/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Child , Cytomegalovirus/pathogenicity , Humans , Medulloblastoma/metabolism , Radiation, Ionizing , Signal Transduction
14.
Cell Death Differ ; 27(3): 1134-1153, 2020 03.
Article in English | MEDLINE | ID: mdl-31409894

ABSTRACT

Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.


Subject(s)
Autophagy , DNA Replication , Oncogenes , Stress, Physiological , Autophagosomes/drug effects , Autophagosomes/metabolism , Camptothecin/pharmacology , Cell Line, Tumor , DNA Replication/drug effects , Humans , Models, Biological , Stress, Physiological/drug effects
15.
DNA Repair (Amst) ; 81: 102654, 2019 09.
Article in English | MEDLINE | ID: mdl-31320249

ABSTRACT

Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer.


Subject(s)
DNA Damage , DNA Repair , DNA Replication , Genomic Instability , DNA/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans
16.
Cancer Res ; 79(14): 3762-3775, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31123088

ABSTRACT

DNA damage checkpoint kinases ATR and WEE1 are among key regulators of DNA damage response pathways protecting cells from replication stress, a hallmark of cancer that has potential to be exploited for therapeutic use. ATR and WEE1 inhibitors are in early clinical trials and success will require greater understanding of both their mechanism of action and biomarkers for patient selection. Here, we report selective antitumor activity of ATR and WEE1 inhibitors in a subset of non-germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL) cell lines, characterized by high MYC protein expression and CDKN2A/B deletion. Activity correlated with the induction of replication stress, indicated by increased origin firing and retardation of replication fork progression. However, ATR and WEE1 inhibitors caused different amounts of DNA damage and cell death in distinct phases of the cell cycle, underlying the increased potency observed with WEE1 inhibition. ATR inhibition caused DNA damage to manifest as 53BP1 nuclear bodies in daughter G1 cells leading to G1 arrest, whereas WEE1 inhibition caused DNA damage and arrest in S phase, leading to earlier onset apoptosis. In vivo xenograft DLBCL models confirmed differences in single-agent antitumor activity, but also showed potential for effective ATR inhibitor combinations. Importantly, insights into the different inhibitor mechanisms may guide differentiated clinical development strategies aimed at exploiting specific vulnerabilities of tumor cells while maximizing therapeutic index. Our data therefore highlight clinical development opportunities for both ATR and WEE1 inhibitors in non-GCB DLBCL subtypes that represent an area of unmet clinical need. SIGNIFICANCE: ATR and WEE1 inhibitors demonstrate effective antitumor activity in preclinical models of DLBCL associated with replication stress, but new mechanistic insights and biomarkers of response support a differentiated clinical development strategy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , DNA Replication/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , Sulfoxides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p15/deficiency , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cyclin-Dependent Kinase Inhibitor p16/genetics , Enzyme Inhibitors/pharmacology , Female , Humans , Indoles , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Morpholines , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Pyrimidinones/administration & dosage , Sulfonamides , Sulfoxides/administration & dosage , Xenograft Model Antitumor Assays
17.
Nat Commun ; 9(1): 5396, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568233

ABSTRACT

This Article contains an error in the spelling of the author Kjeld Møllgård, which is incorrectly given as Kjeld Møllgaard. The error has not been fixed in the original PDF and HTML versions of the Article.

19.
Nucleic Acids Res ; 46(18): 9484-9495, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30124983

ABSTRACT

Mutations in SPOP, the gene most frequently point-mutated in primary prostate cancer, are associated with a high degree of genomic instability and deficiency in homologous recombination repair of DNA but the underlying mechanisms behind this defect are currently unknown. Here we demonstrate that SPOP knockdown leads to spontaneous replication stress and impaired recovery from replication fork stalling. We show that this is associated with reduced expression of several key DNA repair and replication factors including BRCA2, ATR, CHK1 and RAD51. Consequently, SPOP knockdown impairs RAD51 foci formation and activation of CHK1 in response to replication stress and compromises recovery from replication fork stalling. An SPOP interactome analysis shows that wild type (WT) SPOP but not mutant SPOP associates with multiple proteins involved in transcription, mRNA splicing and export. Consistent with the association of SPOP with transcription, splicing and RNA export complexes, the decreased expression of BRCA2, ATR, CHK1 and RAD51 occurs at the level of transcription.


Subject(s)
DNA Replication/genetics , Genomic Instability/genetics , Nuclear Proteins/genetics , Prostatic Neoplasms/genetics , Repressor Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA2 Protein/genetics , Cell Line, Tumor , Checkpoint Kinase 1/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Humans , Male , Mutation , Prostatic Neoplasms/pathology , RNA Splicing/genetics , RNA, Messenger/genetics , Rad51 Recombinase/genetics
20.
Nature ; 559(7713): 279-284, 2018 07.
Article in English | MEDLINE | ID: mdl-29950726

ABSTRACT

Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle1. Replication stress induces fork stalling and fuels genome instability2. The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer2. Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.


Subject(s)
Chromosome Structures , DNA Damage , DNA Replication/physiology , Genomic Instability , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , Chromosome Structures/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/drug effects , DNA Replication/drug effects , Genomic Instability/drug effects , Humans , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Time Factors , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...