Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 124(23): 12824-12844, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-32025453

ABSTRACT

Quantifying the efficacy of different climate forcings is important for understanding the real-world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near-surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy-induced bias of ±0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend.

2.
J Geophys Res Atmos ; 120(18): 9043-9058, 2015 09 27.
Article in English | MEDLINE | ID: mdl-26937327

ABSTRACT

A future decline in solar activity would not offset projected global warmingA future decline in solar activity could have larger regional effects in winterTop-down mechanism contributes to Northern Hemisphere regional response.

SELECTION OF CITATIONS
SEARCH DETAIL
...