Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015481

ABSTRACT

The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects its central role in plant development and cellular metabolism.

2.
Plant Sci ; 305: 110847, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33691973

ABSTRACT

The transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4 (114S) or ABI4 (S114E) but not ABI4 (S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85 % of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4 (114S) are down-regulated by ABI4. Phosphorylation of S114 was required for regulation of 35 % of repressed genes, but only 17 % of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Serine/genetics , Serine/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Phosphorylation/genetics , Phosphorylation/physiology , Plant Growth Regulators/genetics , Transcription Factors/genetics
3.
Plant Sci ; 276: 220-228, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30348322

ABSTRACT

The U-Box E3 ubiquitin ligase, AtPUB46, functions in the drought response: T-DNA insertion mutants of this single paralogous gene are hypersensitive to water- and oxidative stress (Adler et al. BMC Plant Biology 17:8, 2017). Here we analyze the phenotype of AtPUB46 overexpressing (OE) plants. AtPUB46-OE show increased tolerance to water stress and have smaller leaf blades and reduced stomatal pore area and stomatal index compared with wild type (WT). Despite this, the rate of water loss from detached rosettes is similar in AtPUB46-OE and WT plants. Germination of AtPUB46-OE seeds was less sensitive to salt than WT whereas seedling greening was more sensitive. We observed a complex response to oxidative stress applied by different agents: AtPUB46-OE plants were hypersensitive to H2O2 but hyposensitive to methyl viologen. AtPUB46-GFP fusion protein is cytoplasmic, however, in response to H2O2 a considerable proportion translocates to the nucleus. We conclude that the differential stress phenotype of the AtPUB46-OE does not result from its smaller leaf size but from a change in the activity of a stress pathway(s) regulated by a degradation substrate of the AtPUB46 E3 and also from a reduction in stomatal pore size and index.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Hydrogen Peroxide/pharmacology , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cytoplasm/enzymology , Dehydration , Droughts , Genes, Reporter , Germination , Oxidative Stress , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Stomata/enzymology , Plant Stomata/genetics , Plant Stomata/physiology , Recombinant Fusion Proteins , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Sodium Chloride/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...