Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Oncol ; 157: 106944, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39024700

ABSTRACT

OBJECTIVES: We describe the development of 3D-printed stents using our digital workflow and their effects on patients enrolled in the lead-in phase of a multi-center, randomized Phase-II trial. MATERIALS AND METHODS: Digital dental models were created for patients using intraoral scanning. Digital processes were implemented to develop the mouth-opening, tongue-depressing, and tongue-lateralizing stents using stereolithography. Time spent and material 3D-printing costs were measured. Physicians assessed mucositis using the Oral Mucositis Assessment Scale (OMAS) and collected MD Anderson Symptom Inventory (MDASI) reports and adverse events (AEs) from patients at various time points (TPs). OMAS and MDASI results were evaluated using paired t-test analysis. RESULTS: 18 patients enrolled into the lead-in phase across 6 independent clinical sites in the USA. 15 patients received stents (average design and fabrication time, 8 h; average material 3D-printing cost, 11 USD). 10 eligible patients with complete OMAS and MDASI reports across all TPs were assessed. OMAS increased significantly from baseline to week 3 of treatment (mean difference = 0.34; 95 % CI, 0.09-0.60; p = 0.01). MDASI increased significantly from baseline to week 3 of treatment (mean difference = 1.02; 95 % CI, 0.40-1.70; p = 0.005), and week 3 of treatment to end of treatment (mean difference = 1.90; 95 % CI, 0.90-2.92; p = 0.002). AEs (grades 1-3) were reported by patients across TPs. Mucositis and radiation dermatitis were primarily attributed to chemoradiation. CONCLUSIONS: 3D-printed stents were successfully fabricated and well tolerated by patients. As patients enroll in the randomized phase of this trial, data herein will establish a baseline for comparative analysis.


Subject(s)
Head and Neck Neoplasms , Printing, Three-Dimensional , Stents , Workflow , Humans , Stents/adverse effects , Head and Neck Neoplasms/radiotherapy , Male , Female , Middle Aged , Aged , Stomatitis/etiology , Adult
2.
Adv Radiat Oncol ; 9(8): 101533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993196

ABSTRACT

Purpose: Our purpose was to develop a clinically intuitive and easily understandable scoring method using statistical metrics to visually determine the quality of a radiation treatment plan. Methods and Materials: Data from 111 patients with head and neck cancer were used to establish a percentile-based scoring system for treatment plan quality evaluation on both a plan-by-plan and objective-by-objective basis. The percentile scores for each clinical objective and the overall treatment plan score were then visualized using a daisy plot. To validate our scoring method, 6 physicians were recruited to assess 60 plans, each using a scoring table consisting of a 5-point Likert scale (with scores ≥3 considered passing). Spearman correlation analysis was conducted to assess the association between increasing treatment plan percentile rank and physician rating, with Likert scores of 1 and 2 representing clinically unacceptable plans, scores of 3 and 4 representing plans needing minor edits, and a score of 5 representing clinically acceptable plans. Receiver operating characteristic curve analysis was used to assess the scoring system's ability to quantify plan quality. Results: Of the 60 plans scored by the physicians, 8 were deemed as clinically acceptable; these plans had an 89.0th ± 14.5 percentile value using our scoring system. The plans needing minor edits or deemed unacceptable had more variation, with scores falling in the 62.6nd ± 25.1 percentile and 35.6th ± 25.7 percentile, respectively. The estimated Spearman correlation coefficient between the physician score and treatment plan percentile was 0.53 (P < .001), indicating a moderate but statistically significant correlation. Receiver operating characteristic curve analysis demonstrated discernment between acceptable and unacceptable plan quality, with an area under the curve of 0.76. Conclusions: Our scoring system correlates with physician ratings while providing intuitive visual feedback for identifying good treatment plan quality, thereby indicating its utility in the quality assurance process.

3.
J Surg Oncol ; 129(7): 1209-1212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38534025

ABSTRACT

Locally advanced cutaneous squamous cell carcinoma can erode into blood vessels, leading to vascular blowout, requiring emergent surgical intervention. We describe a first case of this disease complication which was effectively managed with endovascular stenting as a bridge to effective systemic and regional therapy. We discuss the efficacy of this staged approach which is novel and timely in a clinical environment of increasingly effective systemic therapies.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Stents , Humans , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Skin Neoplasms/therapy , Endovascular Procedures/methods , Endovascular Procedures/instrumentation , Male , Middle Aged , Aged
4.
Cancers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339376

ABSTRACT

BACKGROUND: Current fiducial markers (FMs) in external-beam radiotherapy (EBRT) for prostate cancer (PCa) cannot be positively visualized on magnetic resonance imaging (MRI) and create dose perturbation and significant imaging artifacts on computed tomography (CT) and MRI. We report our initial experience with clinical imaging of a novel multimodality FM, NOVA. METHODS: We tested Gold Anchor [G-FM], BiomarC [carbon, C-FM], and NOVA FMs in phantoms imaged with kilovoltage (kV) X-rays, transrectal ultrasound (TRUS), CT, and MRI. Artifacts of the FMs on CT were quantified by the relative streak artifacts level (rSAL) metric. Proton dose perturbations (PDPs) were measured with Gafchromic EBT3 film, with FMs oriented either perpendicular to or parallel with the beam axis. We also tested the performance of NOVA-FMs in a patient. RESULTS: NOVA-FMs were positively visualized on all 4 imaging modalities tested. The rSAL on CT was 0.750 ± 0.335 for 2-mm reconstructed slices. In F-tests, PDP was associated with marker type and depth of measurement (p < 10-6); at 5-mm depth, PDP was significantly greater for the G-FM (12.9%, p = 10-6) and C-FM (6.0%, p = 0.011) than NOVA (4.5%). EBRT planning with MRI/CT image co-registration and daily alignments using NOVA-FMs in a patient was feasible and reproducible. CONCLUSIONS: NOVA-FMs were positively visible and produced less PDP than G-FMs or C-FMs. NOVA-FMs facilitated MRI/CT fusion and identification of regions of interest.

5.
Phys Imaging Radiat Oncol ; 29: 100540, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38356692

ABSTRACT

Background and Purpose: Auto-contouring of complex anatomy in computed tomography (CT) scans is a highly anticipated solution to many problems in radiotherapy. In this study, artificial intelligence (AI)-based auto-contouring models were clinically validated for lymph node levels and structures of swallowing and chewing in the head and neck. Materials and Methods: CT scans of 145 head and neck radiotherapy patients were retrospectively curated. One cohort (n = 47) was used to analyze seven lymph node levels and the other (n = 98) used to analyze 17 swallowing and chewing structures. Separate nnUnet models were trained and validated using the separate cohorts. For the lymph node levels, preference and clinical acceptability of AI vs human contours were scored. For the swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets were performed for AI vs human contours for all structures using overlap and distance metrics. Results: Median Dice Similarity Coefficient ranged from 0.77 to 0.89 for lymph node levels and 0.86 to 0.96 for chewing and swallowing structures. The AI contours were superior to or equally preferred to the manual contours at rates ranging from 75% to 91%; there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. Across all AI-generated lymph node level contours, 92% were rated as usable with stylistic to no edits. Of the 340 contours in the chewing and swallowing cohort, 4% required minor edits. Conclusions: An accurate approach was developed to auto-contour lymph node levels and chewing and swallowing structures on CT images for patients with intact nodal anatomy. Only a small portion of test set auto-contours required minor edits.

SELECTION OF CITATIONS
SEARCH DETAIL