Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 671: 294-302, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815366

ABSTRACT

Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells.


Subject(s)
Doxorubicin , Enzymes, Immobilized , Glucose Oxidase , Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , HeLa Cells , Doxorubicin/pharmacology , Doxorubicin/chemistry , Porosity , Nanoparticles/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Surface Properties , Hydrogen-Ion Concentration , Particle Size , Drug Delivery Systems , Drug Liberation , Drug Carriers/chemistry , Gluconates/chemistry , Infrared Rays , Hydrogen Peroxide/chemistry
2.
J Mater Chem B ; 11(30): 7190-7196, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37417457

ABSTRACT

Here, we describe the design of a novel particle-to-particle intercommunicated nanosystem for dual delivery, triggered by physical and chemical inputs. The nanosystem was composed of an Au-mesoporous silica Janus nanoparticle loaded with paracetamol, mechanized with light-sensitive supramolecular gates at the mesoporous face and functionalized on the metal surface with the enzyme acetylcholinesterase. The second component was a mesoporous silica nanoparticle loaded with rhodamine B and gated with thiol-sensitive ensembles. Upon irradiation of this nanosystem with a near-UV light laser, an analgesic drug was released from the Janus nanomachine due to disassembling of the photosensitive gating mechanism. Further addition of N-acetylthiocholine leads to the enzymatic production of thiocholine at the Janus nanomachine, thus acting as a "chemical messenger" causing the disruption of the gating mechanism at the second mesoporous silica nanoparticle with the subsequent dye release.


Subject(s)
Multifunctional Nanoparticles , Nanoparticles , Acetylcholinesterase , Doxorubicin/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry
3.
Mikrochim Acta ; 189(8): 309, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918542

ABSTRACT

Novel Janus nanoparticles based on Au colloids anisotropically modified with polyamidoamine dendrons were prepared though a masking/toposelective modification approach. These nanomaterials were further functionalized with horseradish peroxidase on the dendritic face and provided on the opposite metal surface with a ssDNA aptamer for C-reactive protein (CRP). The resulting nanoparticles were employed as biorecognition/signaling elements to construct an amperometric aptasensor with sandwich-type architecture for the specific detection of this cardiac biomarker. To do this, screen-printed carbon electrodes modified with electrodeposited Au nanoparticles and functionalized with anti-CRP aptamers were used as transduction interface. The aptasensor was employed for the amperometric detection of CRP (working potential: - 200 mV vs pseudo-Ag/AgCl) in the broad range from 10 pg·mL-1 to 1.0 ng·mL-1 with a detection limit of 3.1 pg·mL-1. This electroanalytical device also showed good specificity, reproducibility (RSD = 9.8%, n = 10), and stability and was useful to quantify CRP in reconstituted human serum samples, with a RSD of 13.3%.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , C-Reactive Protein , Electrochemical Techniques/methods , Gold , Humans , Limit of Detection , Reproducibility of Results
4.
J Mater Chem B ; 10(36): 6983-6990, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36004753

ABSTRACT

The construction of a novel enzyme-controlled nanomachine with multiple release mechanisms for on-command delivery is described. This nanodevice was assembled by modifying mesoporous silica nanoparticles with 2-(benzo[d]thiazol-2-yl)phenyl 4-aminobenzoate moieties, and further capped with ß-cyclodextrin-modified glucose oxidase neoglycoenzyme. The device released the encapsulated payload in the presence of H2O2 and acidic media. The use of glucose as an input chemical signal also triggered cargo release through the enzymatic production of gluconic acid and hydrogen peroxide, and the subsequent disruption of the gating mechanism at the mesoporous surface. The nanodevice was successfully employed for the enzyme-controlled release of doxorubicin in HeLa cancer cells.


Subject(s)
Glucose Oxidase , beta-Cyclodextrins , Delayed-Action Preparations , Doxorubicin/pharmacology , Glucose , Humans , Hydrogen Peroxide , Porosity , Silicon Dioxide , para-Aminobenzoates
5.
Biosensors (Basel) ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884317

ABSTRACT

Here we report a novel labeling strategy for electrochemical aptasensors based on enzymatic marking via supramolecular host-guest interactions. This approach relies on the use of an adamantane-modified target-responsive hairpin DNA aptamer as an affinity bioreceptor, and a neoglycoconjugate of ß-cyclodextin (CD) covalently attached to a redox enzyme as a labeling element. As a proof of concept, an amperometric aptasensor for a carcinoembryonic antigen was assembled on screen-printed carbon electrodes modified with electrodeposited fern-like gold nanoparticles/graphene oxide and, by using a horseradish peroxidase-CD neoglycoenzyme as a biocatalytic redox label. This aptasensor was able to detect the biomarker in the concentration range from 10 pg/mL to 1 ng/mL with a high selectivity and a low detection limit of 3.1 pg/mL in human serum samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Aptamers, Nucleotide/chemistry , Electrochemical Techniques , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry
6.
Nanoscale ; 13(44): 18616-18625, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34734589

ABSTRACT

This work describes the assembly of a novel enzyme-controlled nanomachine operated through an AND Boolean logic gate for on-command delivery. The nanodevice was constructed on Au-mesoporous silica Janus nanoparticles capped with a thiol-sensitive gate-like molecular ensemble on the mesoporous face and functionalized with glutathione reductase on the gold face. This autonomous nanomachine employed NADPH and glutathione disulfide as input chemical signals, leading to the enzymatic production of reduced glutathione that causes the disruption of the gating mechanism on the mesoporous face and the consequent payload release as an output signal. The nanodevice was successfully used for the autonomous release of doxorubicin in HeLa cancer cells and RAW 264.7 macrophage cells.


Subject(s)
Nanoparticles , Silicon Dioxide , Doxorubicin/pharmacology , Glutathione , Glutathione Disulfide , Gold , Humans , Porosity
7.
Biosens Bioelectron ; 183: 113203, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33823466

ABSTRACT

A novel amperometric aptasensor for the specific detection of cardiac troponin I (cTnI) was constructed by using screen-printed carbon electrodes coated with a carboxyethylsilanetriol-modified graphene oxide derivative as transduction element. This novel carboxylic acid-enriched nanomaterial allows easy and high load immobilization of the capture aptamer molecules on the electrode surface. The biosensing interface was assembled by covalent attachment of an amino-functionalized DNA aptamer on the carboxylic acid-enriched electrode surface. The sensing approach relies on the specific recognition of cTnI by the aptamer and further assembly of a sandwich-type architecture with a novel aptamer-peroxidase conjugate as signaling element. The aptasensor was employed to detect the cardiac biomarker in the broad range from 1.0 pg/mL to 1.0 µg/mL with a detection limit of 0.6 pg/mL. This electroanalytical device also showed high specificity, reproducibility and stability, and was useful to quantify cTnI in reconstituted human serum samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Reproducibility of Results , Troponin I
SELECTION OF CITATIONS
SEARCH DETAIL
...