Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 29(Pt 3): 644-653, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35510997

ABSTRACT

A novel approach to the remote-control system for the compact multi-crystal energy-dispersive spectrometer for X-ray emission spectroscopy (XES) applications has been developed. This new approach is based on asynchronous communication between software components and on reactive design principles. In this paper, the challenges faced, their solutions, as well as the implementation and future development prospects are identified. The main motivation of this work was the development of a new holistic communication protocol that can be implemented to control various hardware components allowing both independent operation and easy integration into different SCADA systems.


Subject(s)
Software , Synchrotrons , Spectrometry, X-Ray Emission
2.
J Appl Crystallogr ; 55(Pt 1): 1-13, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35153640

ABSTRACT

Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.

4.
Nat Methods ; 17(1): 73-78, 2020 01.
Article in English | MEDLINE | ID: mdl-31740816

ABSTRACT

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.


Subject(s)
Bacterial Proteins/chemistry , Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Photoreceptors, Microbial/chemistry , Protein Conformation , Light , Models, Molecular , Time Factors
5.
Nat Commun ; 10(1): 5021, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685819

ABSTRACT

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Subject(s)
Electrons , Lasers , Membrane Proteins/chemistry , Crystallography , Cyanobacteria/metabolism , Models, Molecular , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/isolation & purification , Static Electricity , Synchrotrons , Thermosynechococcus , X-Rays
6.
J Phys Chem Lett ; 10(3): 441-446, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30566358

ABSTRACT

X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.

SELECTION OF CITATIONS
SEARCH DETAIL