Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Rev Sci Instrum ; 93(11): 113544, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461489

ABSTRACT

Due to the International Thermonuclear Experimental Reactor (ITER) radiative environment, in particular during high D-T power phase, classic x-ray detectors, such as semiconductor diodes, might be too fragile and are thus not viable. Instead, robust detectors, such as gas-filled detectors, are nowadays considered. The Low Voltage Ionization Chamber (LVIC) is one of the most promising candidates for x-ray measurement during the ITER nuclear phase. A complete model of the detector, recently developed at IRFM (Intitute for Research on Magnetic Fusion), now requires experimental validation. Experimental testing at the IRFM laboratory of an ITER industrial LVIC prototype and comparison with modeling are presented. In particular, an original approach to extract information on the x-ray spectrum from current-mode LVIC measurement is validated experimentally.

2.
Rev Sci Instrum ; 92(8): 083511, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470374

ABSTRACT

In tokamaks with tungsten-based plasma facing components, such as ITER, pollution of the plasma by heavy impurities is a major concern as it can lead to radiative breakdown. The radiation emitted by such impurities is mainly composed of x-rays in the [0.1; 100] keV range. A diagnostic allowing for the reconstruction of the impurity distribution is of high interest. The ITER requirements for the x-ray measurement system make it mandatory for the detector to provide spectral information. Due to the radiation environment during the ITER nuclear phase, advanced detectors exhibiting high resilience to neutrons and gamma rays, such as gas-filled detectors, are required. The use of Low Voltage Ionization Chambers (LVICs) for this purpose is investigated in this paper. Several anodes have been added to the detector in order to allow for spectral deconvolution. This article presents a conceptual study of the use of a multi-anode LVIC for energy resolved x-ray measurement on ITER. It covers the design of the multi-anode LVIC and its modeling, the method for spectral deconvolution, and its application to energy resolved x-ray tomography, as well as the computation of the electron temperature from the reconstructed local x-ray emissivity.

3.
Rev Sci Instrum ; 92(5): 054704, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243289

ABSTRACT

The work describes a novel approach to the design of a fast, multichannel measurement system for plasma diagnostics [A. Wojenski et al., Fusion Eng. Des. 123, 727 (2016)]. Its main scope is to provide measurements of soft X-ray (SXR) emission during plasma phenomena at the W-Environment in Steady-state Tokamak (WEST), especially for monitoring and tracing tungsten impurities. This paper describes the vertical Gas Electron Multiplier (GEM) camera installed at the WEST [M. Chernyshova et al., J. Instrument. 10, P10022 (2015)]. The designed GEM detector readout board has more than 100 channels, resulting in high-performance requirements for the data acquisition and processing system. The novel system construction approach is that the unit works on the raw signals providing a high quality of the data, especially in the scope of pileup effect analysis. In the case of doubtful results, the source data can be easily reviewed offline. The data selection and transmission are done in Field-Programmable Gate Arrays (FPGAs) on the custom boards with the custom Peripheral Component Interconnect (PCI)-Express Gen2 switch that allows us to register signals from multiple FPGAs and then process the data by complex algorithms [G. Kasprowicz et al., J. Fusion Energy 38, 480 (2019)]. The firmware is replaceable and different working modes can be applied (some under verification): global trigger mode, high-speed data serialization, and extended signal registration. Low level optimized central processing unit software for data readout was also designed [P. Linczuk et al., J. Instrum. 14, C05001 (2019)]. The installation of the system is described due to complex system components' distribution. The first results of the successful acquisition of the plasma at the WEST are discussed. The corresponding SXR energy and topology spectra were computed. Those are the first technical measurements of the system to ensure verification of data quality.

4.
Rev Sci Instrum ; 91(7): 073504, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752864

ABSTRACT

Soft x-ray (SXR) tomography is a key diagnostic method for impurity transport study in tokamaks since it allows for local impurity density reconstruction. The International Thermonuclear Experimental Reactor (ITER) radiative environment in deuterium-deuterium and deuterium-tritium phases will limit the choices of SXR detector technologies, and gas detectors are one of the most promising solutions. In this paper, we, thus, investigate the SXR tomography possibilities on ITER using Low Voltage Ionization Chambers (LVICs). The study contains the development of a LVIC synthetic diagnostic and its application to estimate the LVIC tomographic capabilities in an ITER D-T scenario, including the influence of LVIC parameters and noise in the measurements.

5.
Rev Sci Instrum ; 89(10): 10F103, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399849

ABSTRACT

Gaussian process tomography (GPT) [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and D. Li, J. Svensson, H. Thomsen, F. Medina, A. Werner, and R. Wolf, Rev. Sci. Instrum. 84, 083506 (2013)] is a recently developed tomography method applied earlier to soft X-ray (SXR) spectroscopy on WEST-Tungsten (W) Environment in Steady-state Tokamak. The short execution time of the algorithm makes GPT an important candidate for providing real-time information on impurity transport and for fast MHD control. In earlier work, GPT has shown its flexibility by providing good reconstruction results without background information about the magnetic equilibrium. On the other hand, information about the magnetic flux surface geometry can in general be useful for additional regularization of the solution. In this paper, we develop a way to take into account the equilibrium information, by constructing a covariance matrix of the prior Gaussian process depending on the flux surface geometry. The GPT method is validated using synthetic SXR emissivity profiles relevant to WEST plasmas and compares favorably with the classical algorithm based on minimization of the Fisher information.

6.
Rev Sci Instrum ; 89(6): 063505, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960552

ABSTRACT

Gaussian process tomography (GPT) is a recently developed tomography method based on the Bayesian probability theory [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and Li et al., Rev. Sci. Instrum. 84, 083506 (2013)]. By modeling the soft X-ray (SXR) emissivity field in a poloidal cross section as a Gaussian process, the Bayesian SXR tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast magnetohydrodynamic control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, the GPT technique is validated using a synthetic data set expected from the WEST tokamak, and the results are shown of its application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the standard algorithm based on minimization of the Fisher information.

7.
Rev Sci Instrum ; 87(11): 11E302, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910573

ABSTRACT

Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plug geometry.

9.
Rev Sci Instrum ; 87(11): 11E325, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910468

ABSTRACT

A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

10.
Rev Sci Instrum ; 85(12): 123507, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25554293

ABSTRACT

In a Tokamak the configuration of the magnetic fields remains the key element to improve performance and to maximise the scientific exploitation of the device. On the other hand, the quality of the reconstructed fields depends crucially on the measurements available. Traditionally in the least square minimisation phase of the algorithms, used to obtain the magnetic field topology, all the diagnostics are given the same weights, a part from a corrective factor taking into account the error bars. This assumption unduly penalises complex diagnostics, such as polarimetry, which have a limited number of highly significant measurements. A completely new method to choose the weights, to be given to the internal measurements of the magnetic fields for improved equilibrium reconstructions, is presented in this paper. The approach is based on various statistical indicators applied to the residuals, the difference between the actual measurements and their estimates from the reconstructed equilibrium. The potential of the method is exemplified using the measurements of the Faraday rotation derived from JET polarimeter. The results indicate quite clearly that the weights have to be determined carefully, since the inappropriate choice can have significant repercussions on the quality of the magnetic reconstruction both in the edge and in the core. These results confirm the limitations of the assumption that all the diagnostics have to be given the same weight, irrespective of the number of measurements they provide and the region of the plasma they probe.

11.
Rev Sci Instrum ; 83(6): 063505, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22755625

ABSTRACT

This paper is focused on the soft x-ray (SXR) tomography system setup at Tore Supra (DTOMOX) and the recent developments made to automatically get precise information about plasma features from inverted data. The first part describes the main aspects of the tomographic inversion optimization process. Several observations are made using this new tool and a set of shape factors is defined to help characterizing the emissivity field in a real-time perspective. The second part presents a detailed off-line analysis comparing the positions of the magnetic axis obtained from a magnetic equilibrium solver, and the maximum of the reconstructed emissivity field for ohmic and heated pulses. A systematic discrepancy of about 5 cm is found in both cases and it is shown that this discrepancy increases during sawtooth crashes. Finally, evidence of radially localized tungsten accumulation with an in-out asymmetry during a lower hybrid current drive pulse is provided to illustrate the DTOMOX capabilities for a precise observation of local phenomena.

12.
Rev Sci Instrum ; 81(10): 10E523, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034051

ABSTRACT

A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

13.
Rev Sci Instrum ; 81(8): 083505, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20842778

ABSTRACT

In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN-unlike software CNN implementations.

14.
Phys Rev Lett ; 102(15): 155005, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19518643

ABSTRACT

MHD instabilities driven by fast electrons identified as fishbonelike modes have been detected on Tore Supra during lower hybrid current drive discharges. Direct experimental evidence is reported of a novel feature: the regular redistribution of suprathermal electrons toward external tokamak regions which are correlated to periodic mode frequency jumps. Sharp drops of the electron temperature time trace are factually linked to the cyclical deterioration of the fast electron confinement.

15.
Rev Sci Instrum ; 79(10): 10E321, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044483

ABSTRACT

This paper describes in detail the recent progresses which have been made in Tore Supra for developing a new technique of calibration of the soft x-ray (SXR) detectors in the range 1-30 keV. The diode response as a function of the flux of photons resulted accurately linear over almost three orders of magnitude. Apart from a limited number of deficient detectors, promptly replaced with new ones, the spread of the diode responses (84 detectors) is about 20% total of the average value. It allowed the derivation of the calibration factor for each detector of the tomography system. The effect of the environmental temperature, in the range 15 degrees-40 degrees, has also been studied, revealing that up to 35 degrees the linearity of diode response and these calibration factors remain constant. It demonstrates the capability of discriminating slight and localized changes in the two dimensional spatial distribution of the SXR intensity.

16.
Rev Sci Instrum ; 79(10): 10E322, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044484

ABSTRACT

A new technique has been especially developed for determining the detection efficiency of the silicon surface barrier diodes used for tomography reconstructions at Tore Supra, as function of the energy of the x-ray photons, in the range of 4-25 keV. The response of these diodes has been studied for different bias voltages (0-120 V), with a portable x-ray electronic tube and a cooled Si-p-i-n diode, working in photon counting mode, for the absolute calibration.

17.
Phys Rev Lett ; 96(9): 095002, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16606270

ABSTRACT

The first electron temperature modulation experiments in plasmas characterized by strong and long-lasting electron and ion internal transport barriers (ITB) have been performed in JET using ion cyclotron resonance heating in mode conversion scheme. The ITB is shown to be a well localized narrow layer with low heat diffusivity, characterized by subcritical transport and loss of stiffness. In addition, results from cold pulse propagation experiments suggest a second order transition process for ITB formation.

18.
Phys Rev Lett ; 96(4): 045004, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16486837

ABSTRACT

During fully noninductively driven discharges in the Tore Supra tokamak, large spontaneous oscillations of the core electron temperature (DeltaTe/Te>50%) have been observed for the first time. They occurred during the standard O regime, which is itself characterized by periodic oscillations of much smaller amplitude. The "giant" oscillations appear to involve distinct mechanisms with respect to the O regime and provide a spectacular example of the complex nonlinear interactions between energy confinement, noninductive current sources, and MHD that may occur in a tokamak plasma during steady-state operation.

19.
Phys Rev Lett ; 92(17): 175002, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15169159

ABSTRACT

By incorporating parametric instabilities of lower hybrid (LH) waves into a ray-tracing Fokker-Planck code, accurate simulations of the LH deposition profiles are provided, which are useful for interpreting the long-lasting internal transport barriers (ITBs) sustained by lower hybrid current drive (LHCD) on JET (Joint European Torus). Utilizing the new model, the simulation of the q-profile evolution results in agreement with that provided by the motional Stark effect reconstructed equilibria. Low magnetic shear (s approximately equal to 0) is produced by LHCD in a layer close to the ITB radial foot.

20.
Phys Rev Lett ; 88(14): 145001, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11955153

ABSTRACT

Joint European Torus discharges which demonstrate the critical role the safety factor profile, q, can play in the formation of internal transport barriers (ITB) are examined. In these discharges, the target parameters, including the E x B flows, were kept virtually the same, except for the q profile. In a discharge with a nonmonotonic q, an ITB was triggered whereas a discharge with monotone q made no such transition. Thus, there is strong evidence that the q profile was the critical factor for the triggering of an ITB. Possible interpretations of this finding are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...