Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Genome Biol ; 23(1): 128, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681161

ABSTRACT

Copy number alterations constitute important phenomena in tumor evolution. Whole genome single-cell sequencing gives insight into copy number profiles of individual cells, but is highly noisy. Here, we propose CONET, a probabilistic model for joint inference of the evolutionary tree on copy number events and copy number calling. CONET employs an efficient, regularized MCMC procedure to search the space of possible model structures and parameters. We introduce a range of model priors and penalties for efficient regularization. CONET reveals copy number evolution in two breast cancer samples, and outperforms other methods in tree reconstruction, breakpoint identification and copy number calling.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology
2.
Neoplasia ; 23(11): 1069-1077, 2021 11.
Article in English | MEDLINE | ID: mdl-34583245

ABSTRACT

Gene expression signatures have proven their potential to characterize important cancer phenomena like oncogenic signaling pathway activities, cellular origins of tumors, or immune cell infiltration into tumor tissues. Large collections of expression signatures provide the basis for their application to data sets, but the applicability of each signature in a new experimental context must be reassessed. We apply a methodology that utilizes the previously developed concept of coherent expression of genes in signatures to identify translatable signatures before scoring their activity in single tumors. We present a web interface (www.rosettasx.com) that applies our methodology to expression data from the Cancer Cell Line Encyclopaedia and The Cancer Genome Atlas. Configurable heat maps visualize per-cancer signature scores for 293 hand-curated literature-derived gene sets representing a wide range of cancer-relevant transcriptional modules and phenomena. The platform allows users to complement heatmaps of signature scores with molecular information on SNVs, CNVs, gene expression, gene dependency, and protein abundance or to analyze own signatures. Clustered heatmaps and further plots to drill-down results support users in studying oncological processes in cancer subtypes, thereby providing a rich resource to explore how mechanisms of cancer interact with each other as demonstrated by exemplary analyses of 2 cancer types.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Software , Transcriptome , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , User-Computer Interface , Web Browser
3.
Sci Rep ; 10(1): 9377, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523056

ABSTRACT

Drug sensitivity prediction constitutes one of the main challenges in personalized medicine. Critically, the sensitivity of cancer cells to treatment depends on an unknown subset of a large number of biological features. Here, we compare standard, data-driven feature selection approaches to feature selection driven by prior knowledge of drug targets, target pathways, and gene expression signatures. We asses these methodologies on Genomics of Drug Sensitivity in Cancer (GDSC) dataset, evaluating 2484 unique models. For 23 drugs, better predictive performance is achieved when the features are selected according to prior knowledge of drug targets and pathways. The best correlation of observed and predicted response using the test set is achieved for Linifanib (r = 0.75). Extending the drug-dependent features with gene expression signatures yields the most predictive models for 60 drugs, with the best performing example of Dabrafenib. For many compounds, even a very small subset of drug-related features is highly predictive of drug sensitivity. Small feature sets selected using prior knowledge are more predictive for drugs targeting specific genes and pathways, while models with wider feature sets perform better for drugs affecting general cellular mechanisms. Appropriate feature selection strategies facilitate the development of interpretable models that are indicative for therapy design.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Imidazoles/therapeutic use , Neoplasms/drug therapy , Oximes/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Computer Simulation , Datasets as Topic , Drug Design , Humans , Molecular Targeted Therapy , Precision Medicine , Prognosis , Signal Transduction , Support Vector Machine , Transcriptome
4.
Commun Biol ; 3(1): 133, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193507

ABSTRACT

Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia.


Subject(s)
Axial Length, Eye/pathology , Cornea/pathology , Corneal Topography , Genetic Loci , Myopia/genetics , Polymorphism, Single Nucleotide , Asian People/genetics , Databases, Genetic , Gene Regulatory Networks , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Myopia/ethnology , Myopia/pathology , Phenotype , Refractometry , Risk Assessment , Risk Factors , White People/genetics
5.
Mol Cancer Ther ; 19(3): 927-936, 2020 03.
Article in English | MEDLINE | ID: mdl-31826931

ABSTRACT

In oncology, biomarkers are widely used to predict subgroups of patients that respond to a given drug. Although clinical decisions often rely on single gene biomarkers, machine learning approaches tend to generate complex multi-gene biomarkers that are hard to interpret. Models predicting drug response based on multiple altered genes often assume that the effects of single alterations are independent. We asked whether the association of cancer driver mutations with drug response is modulated by other driver mutations or the tissue of origin. We developed an analytic framework based on linear regression to study interactions in pharmacogenomic data from two large cancer cell line panels. Starting from a model with only covariates, we included additional variables only if they significantly improved simpler models. This allows to systematically assess interactions in small, easily interpretable models. Our results show that including mutation-mutation interactions in drug response prediction models tends to improve model performance and robustness. For example, we found that TP53 mutations decrease sensitivity to BRAF inhibitors in BRAF-mutated cell lines and patient tumors, suggesting a therapeutic benefit of combining inhibition of oncogenic BRAF with reactivation of the tumor suppressor TP53. Moreover, we identified tissue-specific mutation-drug associations and synthetic lethal triplets where the simultaneous mutation of two genes sensitizes cells to a drug. In summary, our interaction-based approach contributes to a holistic view on the determining factors of drug response.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mutation , Neoplasms/pathology , Pharmacogenetics , Protein Kinase Inhibitors/pharmacology , Databases, Factual , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Organ Specificity
6.
Sci Rep ; 8(1): 7326, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743718

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) often metastasize to lymph nodes resulting in poor prognosis for patients. Unfortunately, the underlying molecular mechanisms contributing to tumour aggressiveness, recurrences, and metastasis are still not fully understood. However, such knowledge is key to identify biomarkers and drug targets to improve prognosis and treatments. Consequently, we performed genome-wide expression profiling of 15 primary HNSSCs compared to corresponding lymph node metastases and non-malignant tissue of the same patient. Differentially expressed genes were bioinformatically exploited applying stringent filter criteria, allowing the discrimination between normal mucosa, primary tumours, and metastases. Signalling networks involved in invasion contain remodelling of the extracellular matrix, hypoxia-induced transcriptional modulation, and the recruitment of cancer associated fibroblasts, ultimately converging into a broad activation of PI3K/AKT-signalling pathway in lymph node metastasis. Notably, when we compared the diagnostic and prognostic value of sequencing data with our expression analysis significant differences were uncovered concerning the expression of the receptor tyrosine kinases EGFR and ERBB2, as well as other oncogenic regulators. Particularly, upregulated receptor tyrosine kinase combinations for individual patients varied, implying potential compensatory and resistance mechanisms against specific targeted therapies. Collectively, we here provide unique transcriptional profiles for disease predictions and comprehensively analyse involved signalling pathways in advanced HNSCC.


Subject(s)
Gene Expression Profiling , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Prognosis , Receptor Protein-Tyrosine Kinases/genetics , Squamous Cell Carcinoma of Head and Neck/diagnosis
7.
Hum Mutat ; 38(8): 1025-1032, 2017 08.
Article in English | MEDLINE | ID: mdl-28493391

ABSTRACT

Recently, the Haplotype Reference Consortium (HRC) released a large imputation panel that allows more accurate imputation of genetic variants. In this study, we compared a set of directly assayed common and rare variants from an exome array to imputed genotypes, that is, 1000 genomes project (1000GP) and HRC. We showed that imputation using the HRC panel improved the concordance between assayed and imputed genotypes at common, and especially, low-frequency variants. Furthermore, we performed a genome-wide association meta-analysis of vertical cup-disc ratio, a highly heritable endophenotype of glaucoma, in four cohorts using 1000GP and HRC imputations. We compared the results of the meta-analysis using 1000GP to the meta-analysis results using HRC. Overall, we found that using HRC imputation significantly improved P values (P = 3.07 × 10-61 ), particularly for suggestive variants. Both meta-analyses were performed in the same sample size, yet we found eight genome-wide significant loci in the HRC-based meta-analysis versus seven genome-wide significant loci in the 1000GP-based meta-analysis. This study provides supporting evidence of the new avenues for gene discovery and fine mapping that the HRC imputation panel offers.


Subject(s)
Exome/genetics , Haplotypes/genetics , Gene Frequency/genetics , Genetic Variation/genetics , Genome, Human/genetics , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide/genetics
8.
PLoS One ; 12(1): e0167742, 2017.
Article in English | MEDLINE | ID: mdl-28107422

ABSTRACT

An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.


Subject(s)
Genome-Wide Association Study , HapMap Project , Humans
9.
Hum Mol Genet ; 26(3): 637-649, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28053049

ABSTRACT

Coagulation factor XI (FXI) has become increasingly interesting for its role in pathogenesis of thrombosis. While elevated plasma levels of FXI have been associated with venous thromboembolism and ischemic stroke, its deficiency is associated with mild bleeding. We aimed to determine novel genetic and post-transcriptional plasma FXI regulators.We performed a genome-wide association study (GWAS) for plasma FXI levels, using novel data imputed to the 1000 Genomes reference panel. Individual GWAS analyses, including a total of 16,169 European individuals from the ARIC, GHS, MARTHA and PROCARDIS studies, were meta-analysed and further replicated in 2,045 individuals from the F5L family, GAIT2 and MEGA studies. Additional association with activated partial thromboplastin time (aPTT) was tested for the top SNPs. In addition, a study on the effect of miRNA on FXI regulation was performed using in silico prediction tools and in vitro luciferase assays.Three loci showed robust, replicating association with circulating FXI levels: KNG1 (rs710446, P-value = 2.07 × 10-302), F11 (rs4253417, P-value = 2.86 × 10-193), and a novel association in GCKR (rs780094, P-value = 3.56 ×10-09), here for the first time implicated in FXI regulation. The two first SNPs (rs710446 and rs4253417) also associated with aPTT. Conditional and haplotype analyses demonstrated a complex association signal, with additional novel SNPs modulating plasma FXI levels in both the F11 and KNG1 loci. Finally, eight miRNAs were predicted to bind F11 mRNA. Over-expression of either miR-145 or miR-181 significantly reduced the luciferase activity in cells transfected with a plasmid containing FXI-3'UTR.These results should open the door to new therapeutic targets for thrombosis prevention.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Adhesion Molecules/blood , Kininogens/genetics , Receptors, Cell Surface/blood , Thrombosis/genetics , Cell Adhesion Molecules/genetics , Computer Simulation , Female , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Partial Thromboplastin Time , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational/genetics , Receptors, Cell Surface/genetics , Thrombosis/blood , Thrombosis/physiopathology
10.
Drug Dev Ind Pharm ; 43(2): 338-346, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27762631

ABSTRACT

CONTEXT: Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments. OBJECTIVE: The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media. METHODS: The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIFmod) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant. RESULTS: Fa/FeSSIFmod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations. DISCUSSION: The compatibility of Fa/FeSSIFmod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo. CONCLUSION: The optimized setup uses FaSSIFmod as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.


Subject(s)
Bile Acids and Salts/chemistry , Caco-2 Cells/physiology , Cell Membrane Permeability/physiology , Intestines/physiology , Jejunum/physiology , Solubility , Animals , Caco-2 Cells/chemistry , Humans , Intestines/chemistry , Jejunum/chemistry , Rats
11.
Nat Commun ; 7: 11008, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27020472

ABSTRACT

Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.


Subject(s)
Educational Status , Environment , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Refractive Errors/genetics , Asian People/genetics , Gene Expression Profiling , Humans , Polymorphism, Single Nucleotide/genetics , White People/genetics
12.
PLoS One ; 11(2): e0149193, 2016.
Article in English | MEDLINE | ID: mdl-26881744

ABSTRACT

Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and function of Treg is still limited and based on single kinase cascades so far. To gain a more comprehensive insight into the pathways determining Treg function we performed kinome profiling using a phosphorylation-based kinome array in human Treg at different activation stages compared to Teff. Here we have determined intriguing quantitative differences in both populations. Resting and activated Treg showed an altered pattern of CD28-dependent kinases as well as of those involved in cell cycle progression. Additionally, significant up-regulation of distinct kinases such as EGFR or CK2 in activated Treg but not in Teff not only resemble data we obtained in previous studies in the murine system but also suggest that those specific molecular activation patterns can be used for definition of the activation and functional state of human Treg. Taken together, detailed investigation of kinome profiles opens the possibility to identify novel molecular mechanisms for a better understanding of Treg biology but also for development of effective immunotherapies against unwanted T cell responses in allergy, autoimmunity and cancer.


Subject(s)
Protein Kinases/metabolism , Proteomics , Signal Transduction , T-Lymphocytes, Regulatory/enzymology , Adult , Blotting, Western , Cytoskeletal Proteins/metabolism , ErbB Receptors/metabolism , Humans , Linear Models , Lymphocyte Activation/immunology , Real-Time Polymerase Chain Reaction
13.
Hum Mol Genet ; 25(2): 358-70, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26561523

ABSTRACT

Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.


Subject(s)
Fibrinogen/analysis , Genetic Loci , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Female , Fibrinogen/genetics , Genome-Wide Association Study , Humans , INDEL Mutation , Male , Middle Aged , White People/genetics
14.
Crit Care Med ; 44(5): e253-63, 2016 May.
Article in English | MEDLINE | ID: mdl-26496445

ABSTRACT

OBJECTIVE: Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Adult anesthetized pigs. INTERVENTIONS: Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS: Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS: Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.


Subject(s)
Brain Injuries/etiology , Brain Injuries/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Animals , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/methods , Inflammation Mediators/metabolism , Pulmonary Atelectasis/prevention & control , RNA, Complementary/metabolism , Random Allocation , Real-Time Polymerase Chain Reaction , Swine , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , gamma-Aminobutyric Acid/metabolism
15.
Mol Ecol ; 25(2): 648-60, 2016 01.
Article in English | MEDLINE | ID: mdl-26615010

ABSTRACT

Many parasites manipulate their hosts' phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts' behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers from unparasitized colonies. Over 400 differentially expressed genes between the three groups were identified, with most uniquely expressed genes detected in parasitized workers. Among these are genes that can be linked to the increased lifespan of parasitized workers. Furthermore, many muscle (functionality) genes are downregulated in these workers, potentially causing the observed muscular deformations and their inactive behaviour. Alterations in lifespan and activity could be adaptive for the parasite by increasing the likelihood that infected workers residing in acorns are eaten by their definitive host, a woodpecker. Our transcriptome analysis reveals numerous gene expression changes in parasitized workers and their uninfected nestmates and indicates possible routes of parasite manipulation. Although causality still needs to be established, parasite-induced alterations in lifespan and host behaviour appear to be partly explained by morphological muscle atrophy instead of central nervous system interference, which is often the core of behavioural regulation. Results of this study will shed light upon the molecular basis of antagonistic species interactions.


Subject(s)
Ants/genetics , Ants/parasitology , Behavior, Animal , Cestoda/physiology , Host-Parasite Interactions/genetics , Animals , Ants/physiology , Cluster Analysis , Genes, Insect , Longevity , Phenotype , Transcriptome
16.
Brief Bioinform ; 17(2): 213-23, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26108229

ABSTRACT

RNA-sequencing (RNA-seq) has become an established way for measuring gene expression in model organisms and humans. While methods development for refining the corresponding data processing and analysis pipeline is ongoing, protocols for typical steps have been proposed and are widely used. Several user interfaces have been developed for making such analysis steps accessible to life scientists without extensive knowledge of command line tools. We performed a systematic search and evaluation of such interfaces to investigate to what extent these can indeed facilitate RNA-seq data analysis. We found a total of 29 open source interfaces, and six of the more widely used interfaces were evaluated in detail. Central criteria for evaluation were ease of configuration, documentation, usability, computational demand and reporting. No interface scored best in all of these criteria, indicating that the final choice will depend on the specific perspective of users and the corresponding weighting of criteria. Considerable technical hurdles had to be overcome in our evaluation. For many users, this will diminish potential benefits compared with command line tools, leaving room for future improvement of interfaces.


Subject(s)
Data Mining/methods , Databases, Genetic , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Software , User-Computer Interface , Algorithms , Biological Science Disciplines/methods
17.
Int J Cardiol ; 187: 166-74, 2015.
Article in English | MEDLINE | ID: mdl-25828346

ABSTRACT

BACKGROUND: Elevated levels of FVIII: c are associated with risk for both venous and arterial thromboembolism. However, no population-based study on the sex-specific distribution and reference ranges of plasma FVIII: c and its cardiovascular determinants is available. FVIII: c was analyzed in a randomly selected sample of 2533 males and 2440 females from the Gutenberg Health Study in Germany. Multivariable regression analyses for FVIII: c were performed under adjustment for genetic determinants, cardiovascular risk factors and cardiovascular disease. RESULTS AND CONCLUSIONS: Females (126.6% (95% CI: 125.2/128)) showed higher FVIII: c levels than males (121.2% (119.8/122.7)). FVIII: c levels increased with age in both sexes (ß per decade: 5.67% (4.22/7.13) male, 6.15% (4.72/7.57) female; p<0.001). Sex-specific reference limits and categories indicating the grade of deviation from the reference were calculated, and nomograms for FVIII: c were created. FVIII: c was approximately 25% higher in individuals with non-O blood type. Adjusted for sex and age, ABO-blood group accounted for 18.3% of FVIII: c variation. In multivariable analysis, FVIII: c was notably positively associated with diabetes mellitus, obesity, hypertension and dyslipidemia and negatively with current smoking. In a fully adjusted multivariable model, the strongest associations observed were of elevated FVIII: c with diabetes and peripheral artery disease in both sexes and with obesity in males. Effects of SNPs in the vWF, STAB2 and SCARA5 gene were stronger in females than in males. The use of nomograms for valuation of FVIII: c might be useful to identify high-risk cohorts for thromboembolism. Additionally, the prospective evaluation of FVIII: c as a risk predictor becomes feasible.


Subject(s)
DNA/genetics , Factor VIII/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic , Population Surveillance/methods , Thromboembolism/epidemiology , Adult , Age Distribution , Aged , Factor VIII/metabolism , Female , Follow-Up Studies , Genotype , Germany/epidemiology , Humans , Incidence , Male , Middle Aged , Prospective Studies , Sex Distribution , Thromboembolism/blood , Thromboembolism/genetics
18.
Mol Cell Proteomics ; 13(10): 2725-35, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25048707

ABSTRACT

Although pathogens are usually transmitted within the first 24-48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the tick's biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases.


Subject(s)
Gene Expression Profiling/methods , Ixodes/growth & development , Proteomics/methods , Salivary Glands/metabolism , Animals , Female , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Ixodes/anatomy & histology , Ixodes/genetics , Life Cycle Stages , Male , Molecular Sequence Data , Organ Specificity , RNA, Transfer/metabolism
19.
Cell Host Microbe ; 12(1): 71-85, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22817989

ABSTRACT

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2α phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2α. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.


Subject(s)
Cytoplasmic Granules/metabolism , Hepacivirus/pathogenicity , Hepatitis C/pathology , Host-Pathogen Interactions , Protein Biosynthesis , Cell Division , Cell Line , Cytoplasmic Granules/drug effects , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Liver/cytology , Liver/virology , Protein Phosphatase 1/metabolism , RNA, Double-Stranded/metabolism , Virus Replication/genetics , eIF-2 Kinase/metabolism
20.
Hepatology ; 56(6): 2082-93, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22711689

ABSTRACT

UNLABELLED: Persistent infection with hepatitis C virus (HCV) can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. All current therapies of hepatitis C include interferon-alpha (IFN-α). Moreover, IFN-gamma (IFN-γ), the only type II IFN, strongly inhibits HCV replication in vitro and is the primary mediator of HCV-specific antiviral T-cell responses. However, for both cytokines the precise set of effector protein(s) responsible for replication inhibition is not known. The aim of this study was the identification of IFN-α and IFN-γ stimulated genes (ISGs) responsible for controlling HCV replication. We devised an RNA interference (RNAi)-based "gain of function" screen and identified, in addition to known ISGs earlier reported to suppress HCV replication, several new ones with proven antiviral activity. These include IFIT3 (IFN-induced protein with tetratricopeptide repeats 3), TRIM14 (tripartite motif containing 14), PLSCR1 (phospholipid scramblase 1), and NOS2 (nitric oxide synthase 2, inducible). All ISGs identified in this study were up-regulated both by IFN-α and IFN-γ, demonstrating a substantial overlap of HCV-specific effectors induced by either cytokine. Nevertheless, some ISGs were more specific for IFN-α or IFN-γ, which was most pronounced in case of PLSCR1 and NOS2 that were identified as main effectors of IFN-γ-mediated anti-HCV activity. Combinatorial knockdowns of ISGs suggest additive or synergistic effects demonstrating that with either IFN, inhibition of HCV replication is caused by the combined action of multiple ISGs. CONCLUSION: Our study identifies a number of novel ISGs contributing to the suppression of HCV replication by type I and type II IFN. We demonstrate a substantial overlap of antiviral programs triggered by either cytokine and show that suppression of HCV replication is mediated by the concerted action of multiple effectors.


Subject(s)
Hepacivirus/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Interferon-alpha/pharmacology , Interferon-gamma/pharmacology , Virus Replication , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Replicon , Tripartite Motif Proteins , Tumor Cells, Cultured , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...