Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Pol Pharm ; 73(4): 1029-1036, 2016 07.
Article in English | MEDLINE | ID: mdl-29648729

ABSTRACT

High profitability and simplicity of direct compression, encourages pharmaceutical industry to create universal excipients to improve technology process. Prosolv® SMCC - silicified microcrystalline cellulose and Starch 1500® - pregelatinized starch, are the example of multifunctional excipients. The aim of the present study was to evaluate the stability of theophylline (API) in the mixtures with excipients with various physico-chemical properties (Prosolv® SMCC 90, Prosolv® SMCC HD 90, Prosolv* SMCC 50®, Starch 1500® and magnesium stearate). The study presents results of thermal analysis of the mixtures with theophylline before and after 6 months storage of the tablets at various temperatures and relative humidity conditions (25 ± 2°C/40 ± 5% RH, 40 ± 2°C/75 ± 5% RH). It was shown that high concentration of Starch 1500® (49%) affects the stability of the theophylline tablets with Prosolv® SMCC. Prosolv® SMCC had no effect on API stability as confirmed by the differential scanning calorimetry (DSC). Changes in peak placements were observed just after tabletting process, which might indicate that compression accelerated the incompatibilities between theophylline and Starch 1500. TGA analysis showed loss in tablets mass equal to water content in starch. GC-MS study established no chemical decomposition of theophylline. We demonstrated that high content of Starch 1500® (49%) in the tablet mass, affects stability on tablets containing theophylline and Prosolv® SMCC.


Subject(s)
Cellulose/chemistry , Starch/chemistry , Theophylline/chemistry , Drug Stability , Gas Chromatography-Mass Spectrometry , Silicon Dioxide/chemistry , Tablets
2.
Acta Pol Pharm ; 70(5): 787-93, 2013.
Article in English | MEDLINE | ID: mdl-24147356

ABSTRACT

Differential scanning calorimetry (DSC) is an analytical procedure used to determine the differences in the heat flow generated or absorbed by the sample. This method allows to assess purity and polymorphic form of drug compounds, to detect interactions between ingredients of solid dosage forms and to analyze stability of solid formulations. The aim of this study was the assessment of compatibility between acetaminophen (API) and different types of excipients often used in tablets compression: polyvinylpyrrolidone, crospovidone, pregelatinized starch, microcrystalline cellulose and magnesium stearate by differential scanning calorimetry. The study contains results of thermal analysis of excipients and individually performed mixtures of these substances with acetaminophen before and after compression and after 6 months storage of tablets at different temperature and relative humidity conditions (25 +/- 2 degrees C /40 +/- 5% RH, 25 +/- 2 degrees C /60 +/- 5% RH, 40 +/- 2 degrees C /75 +/- 5% RH) for a period of 6 months. To detect possible changes of API chemical structure, gas chromatography-mass spectrometry (GC-MS) was also applied. GC-MS with electron impact ionization (EI) was employed to determine the fragmentation pattern of API. It was shown that the developed formulations showed excellent compatibility among all excipients used except Kollidon CL. The interaction with Kollidon CL is probably a result of a physical reaction as confirmed by GC-MS analyses. Obtained results revealed that DSC can be successfully applied to evaluate possible incompatibilities between acetaminophen and Kollidon.


Subject(s)
Acetaminophen/chemistry , Analgesics, Non-Narcotic/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Drug Stability , Drug Storage , Gas Chromatography-Mass Spectrometry , Humidity , Solubility , Spectrometry, Mass, Electrospray Ionization , Tablets , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL