Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 639570, 2021.
Article in English | MEDLINE | ID: mdl-34194425

ABSTRACT

Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.


Subject(s)
Immunity/immunology , Mammals/immunology , Staphylococcus Phages/immunology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Antibodies/immunology , Antibody Formation/immunology , Capsid/immunology , Capsid Proteins/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Kinetics , Male , Mammals/microbiology , Mammals/virology , Mice , Mice, Inbred C57BL , Phage Therapy/methods , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/virology , Staphylococcus aureus/immunology , Staphylococcus aureus/virology , Virion/immunology
2.
Protoplasma ; 256(5): 1433-1447, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31134405

ABSTRACT

Lepidoptera together with its sister group Trichoptera belongs to the superorder Amphiesmenoptera, which is closely related to the Antliophora, comprising Diptera, Siphonaptera, and Mecoptera. In the lepidopteran Pieris napi, a representative of the family Pieridae, the ovaries typical of butterflies are polytrophic and consist of structural ovarian units termed ovarioles. Each ovariole is composed of a terminal filament, germarium, vitellarium, and ovariole stalk. The germarium houses developing germ cell clusters and somatic prefollicular and follicular cells. The significantly elongated vitellarium contains linearly arranged ovarian follicles in successive stages of oogenesis (previtellogenesis, vitellogenesis, and choriogenesis). Each follicle consists of an oocyte and seven nurse cells surrounded by follicular epithelium. During oogenesis, follicular cells diversify into five morphologically and functionally distinct subpopulations: (1) main body follicular cells (mbFC), (2) stretched cells (stFC), (3) posterior terminal cells (pFC), (4) centripetal cells (cpFC), and (5) interfollicular stalk cells (IFS). Centripetal cells are migratorily active and finally form the micropyle. Interfollicular stalk cells derive from mbFC as a result of mbFC intercalation. Differentiation and diversification of follicular cells in Pieris significantly differ from those described in Drosophila in the number of subpopulations and their origin and function during oogenesis.


Subject(s)
Butterflies/chemistry , Drosophila/chemistry , Epithelium/metabolism , Insecta/chemistry , Ovarian Follicle/metabolism , Animals , Cell Differentiation , Cell Movement , Female
3.
Zoomorphology ; 136(2): 233-240, 2017.
Article in English | MEDLINE | ID: mdl-28553007

ABSTRACT

This paper describes the relationship between the arrangement of dermal chromatophores in tokay gecko (Gekko gecko) skin and the formation of wild-type colouration, with emphasis on the ultrastructure of chromatophores. The samples of the tokay gecko skin were collected from wild-type colouration adult specimens. Morphology and distribution of chromatophores was determined by using light microscopy and transmission electron microscopy. The present study revealed that orange/red coloured skin of G. gecko contained erythrophores, which were located under basement membrane, and usually comprised deeper situated iridophores and melanophores which were form single layer with iridophores or were occupying the deepest region of dermis. In orange/red coloured skin, erythrophores were the predominant chromatophores. However in blue areas these cells occurred in small numbers or were not noticed at all. In blue pigmented areas predominated iridophores and melanophores. Iridophores were found just under basement membrane, but this superficial location of iridophores occured only in areas without erythrophores. Distribution of erythrophores, melanophores, and iridophores determines the characteristic blue colour of the tokay gecko skin with orange/red dots on the whole body.

4.
Arthropod Struct Dev ; 45(5): 488-495, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27645113

ABSTRACT

Scorpions are viviparous matrotrophic arthropods. Both, fertilization and embryonic development occur in the female gonad called ovariuterus. Two distinct reproductive patterns are recognized among scorpions: apoikogenic and katoikogenic. In the ovariuterus of apoikogenic scorpions growing oocytes protrude from the ovarian wall and continue previtellogenic and vitellogenic growth on the gonad surface being accompanied by the follicular cells that cover the oocyte surface, and, in most families, the stalk cells that join the oocyte with the ovariuterus wall. In the katoikogenic ovariuterus the oocytes grow in outpocketings of the ovarian wall called diverticula. The aim of our study was to show the development and structure of the diverticula in two katoikogenic scorpions from the family Scorpionidae: Ophistothalmus boehmei and Heterometrus spinifer. We show that the somatic components of each diverticulum develop from the two epithelial layers of the ovariuterine wall. Before fertilization, the wall of the mature diverticula consists of two distinctive epithelial layers: an internal and an external one. Our observations reveal that the epithelial cells of the internal layer of the diverticulum show striking morphological resemblance to the follicular and stalk cells that accompany the growing oocytes in some apoikogenic scorpions. The external epithelial layer of the katoikogenic diverticulum seems to have no equivalents in the apoikogenic type. Functions of the somatic cells of the diverticulum are discussed.


Subject(s)
Genitalia, Female/ultrastructure , Scorpions/ultrastructure , Animals , Female , Genitalia, Female/growth & development , Genitalia, Female/physiology , Oocytes/growth & development , Oocytes/ultrastructure , Oogenesis , Vitellogenesis
5.
Protoplasma ; 253(4): 1033-42, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26224214

ABSTRACT

Ovaries of neuropterans are of meroistic-polytrophic type. The ovarian tubes, the ovarioles, are divided into two major parts: a germarium, comprised of newly formed germ cell clusters; and a vitellarium, housing linearly arranged ovarian follicles. Each ovarian follicle consists of the germ cell cluster diversified into different number of nurse cells, and the oocyte enclosed by follicular epithelium. In Osmylus fulvicephalus, a representative of Neuroptera, during consecutive stages of oogenesis, the follicular cells undergo a multistep process of diversification which leads to the appearance of several follicular cell subpopulations i.e., the main-body follicular cells, the stretched cells, the anterior centripetal cells, and posterior centripetal cells. The anterior centripetal cells occupy the anterior pole of the oocyte and in advanced oogenesis due to hypertrophy that transform into anterior fold cells. Initially, the anterior fold cells form a symmetric fold, but in advanced oogenesis, quite different from other neuropterans studied so far, they undergo uneven hypertrophic growth which results in breaking symmetry of the anterior fold that becomes shifted to the ventral side of the oocyte. Since the anterior fold cells participate in the production of the specialized chorion structure, the micropyle, asymmetric structure of the anterior fold, is reflected both in its asymmetric position and in the asymmetric construction of the micropyle. As a consequence of breaking symmetry of the anterior fold, Osmylus eggshell gains dorso-ventral polarity, which is unusual for neuropterans.


Subject(s)
Insecta/ultrastructure , Ovum/ultrastructure , Animals , Female , Ovary/cytology , Vitellogenesis
6.
Arthropod Struct Dev ; 43(4): 361-70, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24322052

ABSTRACT

In apoikogenic scorpions, growing oocytes protrude from the gonad (ovariuterus) and develop in follicles exposed to the mesosomal (i.e. hemocoelic) cavity. During subsequent stages of oogenesis (previtellogenesis and vitellogenesis), the follicles are connected to the gonad surface by prominent somatic stalks. The aim of our study was to analyze the origin, structure and functioning of somatic cells accompanying protruding oocytes. We show that these cells differentiate into two morphologically distinct subpopulations: the follicular cells and stalk cells. The follicular cells gather on the hemocoelic (i.e. facing the hemocoel) surface of the oocyte, where they constitute a cuboidal epithelium. The arrangement of the follicular cells on the oocyte surface is not uniform; moreover, the actin cytoskeleton of these cells undergoes significant modifications during oocyte growth. During initial stages of the stalk formation the stalk cells elongate and form F-actin rich cytoplasmic processes by which the stalk cells are tightly connected to each other. Additionally, the stalk cells develop microvilli directed towards the growing oocyte. Our findings indicate that the follicular cells covering hemocoelic surfaces of the oocyte and the stalk cells represent two distinct subpopulations of epithelial cells, which differ in morphology, behavior and function.


Subject(s)
Cell Differentiation , Scorpions/growth & development , Animals , Female , Microscopy, Electron, Transmission , Nymph/anatomy & histology , Nymph/growth & development , Nymph/ultrastructure , Oocytes/cytology , Oocytes/growth & development , Ovary/anatomy & histology , Ovary/growth & development , Ovary/ultrastructure , Scorpions/anatomy & histology , Scorpions/ultrastructure , Uterus/anatomy & histology , Uterus/growth & development , Uterus/ultrastructure
7.
Arthropod Struct Dev ; 42(1): 27-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23000464

ABSTRACT

Pseudoscorpion females carry fertilized eggs and embryos in specialized brood sacs, where embryos are fed with a nutritive fluid produced and secreted by somatic ovarian cells. We used various microscopic techniques to analyze the organization of the somatic cells in the ovary of a pseudoscorpion, Chelifer cancroides. In young specimens, the ovary is a cylindrical mass of internally located germline cells (oogonia and early previtellogenic oocytes) and two types of somatic cells: the epithelial cells of the ovarian wall and the internal interstitial cells. In subsequent stages of the ovary development, the oocytes grow and protrude from the ovary into the hemocoel (opisthosomal cavity). At the same time the interstitial cells differentiate into the follicular cells that directly cover the oocyte surface, whereas some epithelial cells of the ovarian wall form the oocyte stalks - tubular structures that connect the oocytes with the ovarian tube. The follicular cells do not seem to participate in oogenesis. In contrast, the cells of the stalk presumably have a dual function. During ovulation the stalk cells appear to contribute to the formation of the external egg envelope (chorion), while in the post-ovulatory phase of ovary function they cooperate with the other cells of the ovarian wall in the production of the nutritive fluid for the developing embryos.


Subject(s)
Arachnida/anatomy & histology , Arachnida/physiology , Animals , Arachnida/cytology , Cell Differentiation , Female , Germ Cells/cytology , Germ Cells/physiology , Germ Cells/ultrastructure , Microscopy, Electron, Transmission , Oocytes/cytology , Oocytes/physiology , Oocytes/ultrastructure , Oogenesis , Ovarian Follicle/anatomy & histology , Ovarian Follicle/physiology , Ovary/anatomy & histology , Ovary/physiology , Ovulation , Vitellogenesis
8.
Arthropod Struct Dev ; 41(1): 65-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21985902

ABSTRACT

Although the ovaries of Nematocera are of the same meroistic-polytrophic type, they show significant differences in the activity of germ cells (oocytes, nurse cells) and their relative contribution to ribosome synthesis and storage during oogenesis. These different activities result in the different growth rate of the germ cells and may determine the life span of the nurse cells. Comparative analysis revealed that with reference to germ cell activity, two basic types of oogenesis in Nematocera can be distinguished. In the Tinearia type, the nurse cells grow considerably and are active until advanced stages of oogenesis, whereas the oocyte is transcriptionally inert. Conversely, in the Tipula type of oogenesis, the oocyte nucleus contains transcriptionally active multiple nucleoli, while nurse cells probably do not contribute to ribosome synthesis, remain relatively small and degenerate early in oogenesis. We studied and compared the process of somatic follicular cell differentiation in nematoceran species representing both types of oogenesis. Our observations indicate that morphogenesis of the follicular cells is at least partly independent of the nurse cell activity, while the execution of their differentiation does not require direct contacts between the follicular cells and the oocyte.


Subject(s)
Diptera/growth & development , Oogenesis , Ovarian Follicle/cytology , Animals , Cell Differentiation , Diptera/cytology , Female , Ovary/cytology , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...