Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 69(2): 869-74, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11159980

ABSTRACT

BCG, the attenuated strain of Mycobacterium bovis, has been widely used as a vaccine against tuberculosis and is thus an important candidate as a live carrier for multiple antigens. With the aim of developing a recombinant BCG (rBCG) vaccine against diphtheria, pertussis, and tetanus (DPT), we analyzed the potential of CRM(197), a mutated nontoxic derivative of diphtheria toxin, as the recombinant antigen for a BCG-based vaccine against diphtheria. Expression of CRM(197) in rBCG was achieved using Escherichia coli-mycobacterium shuttle vectors under the control of pBlaF*, an upregulated beta-lactamase promoter from Mycobacterium fortuitum. Immunization of mice with rBCG-CRM(197) elicited an anti-diphtheria toxoid antibody response, but the sera of immunized mice were not able to neutralize diphtheria toxin (DTx) activity. On the other hand, a subimmunizing dose of the conventional diphtheria-tetanus vaccine, administered in order to mimic an infection, showed that rBCG-CRM(197) was able to prime the induction of a humoral response within shorter periods. Interestingly, the antibodies produced showed neutralizing activity only when the vaccines had been given as a mixture in combination with rBCG expressing tetanus toxin fragment C (FC), suggesting an adjuvant effect of rBCG-FC on the immune response induced by rBCG-CRM(197). Isotype analysis of the anti-diphtheria toxoid antibodies induced by the combined vaccines, but not rBCG-CRM(197) alone, showed an immunoglobulin G1-dominant profile, as did the conventional vaccine. Our results show that rBCG expressing CRM(197) can elicit a neutralizing humoral response and encourage further studies on the development of a DPT vaccine with rBCG.


Subject(s)
Antibodies, Bacterial/biosynthesis , BCG Vaccine/immunology , Bacterial Proteins/immunology , Diphtheria Toxin/immunology , Vaccines, Synthetic/immunology , Animals , Immunization , Male , Mice , Mice, Inbred BALB C
2.
Infect Immun ; 68(9): 4877-83, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10948100

ABSTRACT

The recent development of acellular pertussis vaccines has been a significant improvement in the conventional whole-cell diphtheria-pertussis-tetanus toxoid vaccines, but high production costs will limit its widespread use in developing countries. Since Mycobacterium bovis BCG vaccination against tuberculosis is used in most developing countries, a recombinant BCG-pertussis vaccine could be a more viable alternative. We have constructed recombinant BCG (rBCG) strains expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (S1PT) in fusion with either the beta-lactamase signal sequence or the whole beta-lactamase protein, under control of the upregulated M. fortuitum beta-lactamase promoter, pBlaF*. Expression levels were higher in the fusion with the whole beta-lactamase protein, and both were localized to the mycobacterial cell wall. The expression vectors were relatively stable in vivo, since at two months 85% of the BCG recovered from the spleens of vaccinated mice maintained kanamycin resistance. Spleen cells from rBCG-S1PT-vaccinated mice showed elevated gamma interferon (IFN-gamma) and low interleukin-4 (IL-4) production, as well as increased proliferation, upon pertussis toxin (PT) stimulation, characterizing a strong antigen-specific Th1-dominant cellular response. The rBCG-S1PT strains induced a low humoral response against PT after 2 months. Mice immunized with rBCG-S1PT strains displayed high-level protection against an intracerebral challenge with live Bordetella pertussis, which correlated with the induction of a PT-specific cellular immune response, reinforcing the importance of cell-mediated immunity in the protection against B. pertussis infection. Our results suggest that rBCG-expressing pertussis antigens could constitute an effective, low-cost combined vaccine against tuberculosis and pertussis.


Subject(s)
Mycobacterium bovis/genetics , Pertussis Toxin , Pertussis Vaccine/immunology , Vaccines, Synthetic/immunology , Virulence Factors, Bordetella/immunology , Animals , Antibodies, Bacterial/biosynthesis , Brain/microbiology , Interferon-gamma/biosynthesis , Interleukin-4/biosynthesis , Male , Mice , Mice, Inbred BALB C , Mycobacterium bovis/immunology , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...