Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1653, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964152

ABSTRACT

Improving the performance of molecular qubits is a fundamental milestone towards unleashing the power of molecular magnetism in the second quantum revolution. Taming spin relaxation and decoherence due to vibrations is crucial to reach this milestone, but this is hindered by our lack of understanding on the nature of vibrations and their coupling to spins. Here we propose a synergistic approach to study a prototypical molecular qubit. It combines inelastic X-ray scattering to measure phonon dispersions along the main symmetry directions of the crystal and spin dynamics simulations based on DFT. We show that the canonical Debye picture of lattice dynamics breaks down and that intra-molecular vibrations with very-low energies of 1-2 meV are largely responsible for spin relaxation up to ambient temperature. We identify the origin of these modes, thus providing a rationale for improving spin coherence. The power and flexibility of our approach open new avenues for the investigation of magnetic molecules with the potential of removing roadblocks toward their use in quantum devices.

2.
Sci Total Environ ; 866: 161345, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36603636

ABSTRACT

Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arctic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The potential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate. The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respectively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 ≈ 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.

3.
Phys Rev Lett ; 129(20): 207201, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36461990

ABSTRACT

Spinons are well known as the elementary excitations of one-dimensional antiferromagnetic chains, but means to realize spinons in higher dimensions is the subject of intense research. Here, we use resonant x-ray scattering to study the layered trimer iridate Ba_{4}Ir_{3}O_{10}, which shows no magnetic order down to 0.2 K. An emergent one-dimensional spinon continuum is observed that can be well described by XXZ spin-1/2 chains with a magnetic exchange of ∼55 meV and a small Ising-like anisotropy. With 2% isovalent Sr doping, magnetic order appears below T_{N}=130 K along with sharper excitations in (Ba_{1-x}Sr_{x})_{4}Ir_{3}O_{10}. Combining our data with exact diagonalization calculations, we find that the frustrated intratrimer interactions effectively reduce the system into decoupled spin chains, the subtle balance of which can be easily tipped by perturbations such as chemical doping. Our results put Ba_{4}Ir_{3}O_{10} between the one-dimensional chain and two-dimensional quantum spin liquid scenarios, illustrating a new way to suppress magnetic order and realize fractional spinons.

4.
Phys Rev Lett ; 126(17): 177601, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988428

ABSTRACT

Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.

5.
Phys Rev Lett ; 123(19): 197202, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765174

ABSTRACT

Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.

6.
Nat Commun ; 10(1): 1435, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926816

ABSTRACT

Although CDW correlations are a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for pinning the CDW to the lattice. Here, we report coherent resonant X-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition creates inequivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to far higher temperatures. That memory is only lost on cycling to 240(3) K, which recovers the four-fold symmetry of the CuO2 planes. We infer that the structural features that develop below 240 K determine the CDW pinning landscape below 54 K. This opens a view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.

7.
Nat Commun ; 9(1): 5013, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30479333

ABSTRACT

Manipulating magnetic domains is essential for many technological applications. Recent breakthroughs in Antiferromagnetic Spintronics brought up novel concepts for electronic device development. Imaging antiferromagnetic domains is of key importance to this field. Unfortunately, some of the basic domain types, such as antiphase domains, cannot be imaged by conventional techniques. Herein, we present a new domain projection imaging technique based on the localization of domain boundaries by resonant magnetic diffraction of coherent X rays. Contrast arises from reduction of the scattered intensity at the domain boundaries due to destructive interference effects. We demonstrate this approach by imaging antiphase domains in a collinear antiferromagnet Fe2Mo3O8, and observe evidence of domain wall interaction with a structural defect. This technique does not involve any numerical algorithms. It is fast, sensitive, produces large-scale images in a single-exposure measurement, and is applicable to a variety of magnetic domain types.

8.
Phys Rev Lett ; 117(16): 167001, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792368

ABSTRACT

The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially modulated superconducting wave function. We test the dynamics of CDW order in La_{1.825}Ba_{0.125}CuO_{4} by using x-ray photon correlation spectroscopy at the CDW wave vector, detected resonantly at the Cu L_{3} edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2 ¾ h. We discuss the implications of these results for some of the competing theories.

9.
Nat Commun ; 5: 3714, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24762677

ABSTRACT

The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine X-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic X-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone centre and they deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the Γ-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin excitations (paramagnons) recently observed in hole-doped compounds even at high doping levels.

10.
Phys Rev Lett ; 110(18): 187001, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683237

ABSTRACT

We use resonant x-ray scattering to determine the momentum-dependent charge correlations in YBa(2)Cu(3) O(6.55) samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments are carried out on a YBa(2)Cu(3)O(6.6) crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length are found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa(2)Cu(3)O(6+δ).


Subject(s)
Barium Compounds/chemistry , Copper/chemistry , Oxides/chemistry , Yttrium/chemistry , Crystallization , Electric Conductivity , X-Ray Diffraction
11.
J Phys Condens Matter ; 25(5): 055603, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23300186

ABSTRACT

Following the controversy between two previous publications (Lorenzo et al 2008 Phys. Rev. Lett. 101 226401 and Garcia et al 2009 Phys. Rev. Lett. 102 176405), we report on the influence of mechanical polishing, and subsequent sample storage, on the electronic order at the Verwey transition of highly pure magnetite, Fe(3)O(4), by resonant x-ray scattering. Contrary to expectations, mechanically polishing the surface induces an inhomogeneous micron deep dead layer, probably of powdered Fe(3)O(4). In addition, we have found that polishing the sample immediately before the experiment influences and favors the appearance of long range order electronic correlations, whereas samples polished well in advance have their electronic order quenched. Conversely, lattice distortions associated with the Verwey transition appear less affected by the surface state. We conclude that mechanical polishing induces stresses at the surface that may propagate into the core of the single crystal sample. These strains relax with time, which affects the different order parameters, as measured by x-ray resonant diffraction.

12.
Phys Rev Lett ; 109(16): 167001, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215115

ABSTRACT

Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

13.
Science ; 337(6096): 821-5, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22798406

ABSTRACT

The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.

14.
Phys Rev Lett ; 109(26): 267202, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368608

ABSTRACT

We present an element selective resonant magnetic x-ray scattering study of NdFe3(BO3)4 as a function of temperature and applied magnetic field. Our measurements show that the magnetic order of the Nd sublattice is induced by the Fe spin order. When a magnetic field is applied parallel to the hexagonal basal plane, the helicoidal spin order is suppressed and a collinear ordering, where the moments are forced to align in a direction perpendicular to the applied magnetic field, is stabilized. This result excludes a noncollinear spin order as the origin of the magnetically induced electric polarization in this compound. Instead our data imply that magnetic frustration results in a phase competition, which is the origin of the magnetoelectric response.

15.
Phys Rev Lett ; 106(19): 197204, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668197

ABSTRACT

Using powder neutron diffraction, we have discovered an unusual magnetic order-order transition in the Ising spin chain compound Ca3Co2O6. On lowering the temperature, an antiferromagnetic phase with a propagation vector k=(0.5,-0.5,1) emerges from a higher temperature spin density wave structure with k=(0,0,1.01). This transition occurs over an unprecedented time scale of several hours and is never complete.

16.
Phys Rev Lett ; 103(7): 077602, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19792687

ABSTRACT

Geometrical frustration of the Fe ions in LuFe2O4 leads to intricate charge and magnetic order and a strong magnetoelectric coupling. Using resonant x-ray diffraction at the Fe K edge, the anomalous scattering factors of both Fe sites are deduced from the (h/3 k/3 l/2) reflections. The chemical shift between the two types of Fe ions equals 4.0(1) eV corresponding to full charge separation into Fe2+ and Fe3+. The polarization and azimuthal angle dependence of the superlattice reflections demonstrate the absence of differences in anisotropic scattering revealing random orientations of the Fe2+ orbitals characteristic of an orbital glass state.

17.
J Phys Condens Matter ; 21(48): 485601, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-21832526

ABSTRACT

Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1)(C) and superlattice [Formula: see text] reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.

18.
Phys Rev Lett ; 101(22): 226401, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19113492

ABSTRACT

The subtle interplay among electronic degrees of freedom (charge and orbital orderings), spin and lattice distortion that conspire at the Verwey transition in magnetite (Fe3O4) is still a matter of controversy. Here, we provide compelling evidence that these electronic orderings are manifested as a continuous phase transition at the temperature where a spin reorientation takes place at around 130 K, i.e., well above TV approximately 121 K. The Verwey transition seems to leave the orbital ordering unaffected whereas the charge ordering development appears to be quenched at this temperature and the temperature dependence below TV is controlled by the lattice distortions. Finally, we show that the orbital ordering does not reach true long range (disorder), and the correlation length along the c-direction is limited to 100 angstroms.


Subject(s)
Ferrosoferric Oxide/chemistry , Chemical Phenomena , X-Ray Diffraction
19.
Phys Rev Lett ; 101(9): 097207, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851656

ABSTRACT

We present a detailed powder and single-crystal neutron diffraction study of the spin chain compound Ca3Co2O6. Below 25 K, the system orders magnetically with a modulated partially disordered antiferromagnetic structure. We give a description of the magnetic interactions in the system which is consistent with this magnetic structure. Our study also reveals that the long-range magnetic order coexists with a shorter-range order with a correlation length scale of approximately 180 angstroms in the ab plane. Remarkably, on cooling, the volume of material exhibiting short-range order increases at the expense of the long-range order.

20.
J Phys Condens Matter ; 20(23): 235211, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-21694302

ABSTRACT

A study using resonant x-ray scattering at the Mn K edge has been carried out on a Bi(0.63)Sr(0.37)MnO(3) single crystal. This compound undergoes a metal-insulator phase transition to the so-called charge ordered (CO) state at about 530 K. Strong resonance signals were observed at room temperature as the energy was tuned through the Mn K edge for several superstructures of the CO phase. The energy, polarization and azimuth angle dependences agree with a checkerboard ordering in the ab plane of manganese atoms of two types, in terms of their different local geometrical structures. One of the sites is anisotropic-a tetragonal distorted oxygen octahedron-and the other is isotropic-a nearly undistorted one, as observed for Bi(0.5)Sr(0.5)MnO(3) and other half-doped manganites. This result indicates that the checkerboard pattern is strongly stable and extends to doping concentrations x<0.5. No superstructures corresponding to the doubling of the c axis were detected. Intermediate valence states lower than 3.5, according to the fractional charge segregation, were deduced for the two non-equivalent Mn atoms, i.e. Mn(3.30+) and Mn(3.44+).

SELECTION OF CITATIONS
SEARCH DETAIL
...