Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Br J Nutr ; : 1-13, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606551

ABSTRACT

Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d post-weaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0·01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0·04) and increased linearly the feed to gain (P = 0·004). CAM increased linearly the liver weight (P < 0·0001) and affected the cadaverine (P < 0·001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0·05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.

2.
Poult Sci ; 103(1): 103179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931400

ABSTRACT

Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.


Subject(s)
Muscular Diseases , Poultry Diseases , Humans , Animals , Pectoralis Muscles/metabolism , Chickens/physiology , Collagen Type IV/metabolism , Poultry Diseases/genetics , Poultry Diseases/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/veterinary , Muscular Diseases/metabolism , Meat/analysis
3.
Cell Tissue Res ; 395(1): 39-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37982872

ABSTRACT

The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.


Subject(s)
Myenteric Plexus , Submucous Plexus , Humans , Swine , Animals , Substance P , Neurons , Colon , Choline O-Acetyltransferase
4.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-38064718

ABSTRACT

Infant mortality of low birth body weight (LBBW) piglets can reach 10% and is mainly due to gut and immune system immaturity which can lead to a higher risk in the long term. This study aimed to assess the impact of birth body weight (BBW) on piglet metabolism, gut status, and microbial profile from weaning to 21 d postweaning. At birth, 32 piglets were selected for their BBW and inserted into the normal BBW (NBBW:1.38 ±â€…0.09 g) or the LBBW (0.92 ±â€…0.07 g) group. The piglets were weighed weekly from weaning (d0) to d21. At d9 and d21, 8 piglets/group were slaughtered to obtain the distal jejunum for morphology, immunohistochemistry, and gene expression analysis, colon content for microbiota and short-chain fatty acid (SCFA) analysis, and intestinal content for pH measurement. Blood was collected for metabolomic, haptoglobin (Hp), and reactive oxygen metabolite (ROM) analysis. The LBBW group had a lower body weight (BW) throughout the study (P < 0.01), a lower average daily gain from d9-d21 (P = 0.002), and lower feed intake (P = 0.02). The LBBW piglets had lower Hp at d9 (P = 0.03), higher ROMs at d21 (P = 0.06), and a net alteration of the amino acid (AA) metabolism at d9 and d21. A higher expression of NFKB2 was observed in the LBBW piglets at d9 (P = 0.003) and d21 (P < 0.001). MYD88 expression was enhanced in NBBW piglets at d9 (P < 0.001). The LBBW piglets had a lower villus height, absorptive mucosal surface (P = 0.01), and villus height:crypt depth ratio (P = 0.02), and a greater number of T-lymphocytes in both the epithelium and the crypts (P < 0.001) at d21. At d21, the LBBW piglets had higher lactic acid, acetate, butyrate, and valerate, and also higher SCFA in the colon (P < 0.05). The LBBW piglets had a higher Shannon index (P = 0.01) at d9 and a higher abundance of SCFA-fermenting bacteria. In conclusion, the present study confirmed that LBBW could impact the gut mucosal structure, immunity, and inflammatory and oxidative status, leading to an altered AA metabolism, and delaying the recovery from weaning.


The drawback of the high prolificacy selection in the swine industry in the past decades is an increase in the number of piglets born with a low birth body weight (LBBW). This study aimed to assess performance, metabolism, gut status, and microbial profile in piglets born with low (0.92 ±â€…0.07 g) and normal birth body weight (1.38 ±â€…0.09 g). Piglets were weighed weekly from weaning (25 d) until 3 weeks postweaning (end of the trial). At d9 and d21, 8 piglets/group were slaughtered to obtain blood for metabolomic, haptoglobin, reactive oxygen metabolite analyses, colon content for microbiota and short-chain fatty acid, intestinal content for pH measurement, distal jejunum for morphology, immunohistochemistry, and gene expression. The LBBW resulted in lower body weight through the study (P < 0.001), lower average daily gain from d9 to d21 (P = 0.002), and lower feed intake (P = 0.02). The LBBW piglets had a lower villus height, absorptive mucosal surface (P = 0.01), and villus height:crypt depth ratio (P = 0.02), and a greater number of T-lymphocytes in both the epithelium and the crypts (P < 0.001) at d21. In conclusion, the present study confirmed that LBBW could impact the gut mucosal structure, immunity, and inflammatory and oxidative status, leading to an altered AA metabolism, and delaying the recovery from weaning.


Subject(s)
Eating , Jejunum , Humans , Animals , Swine , Weaning , Birth Weight , Dietary Supplements , Animal Feed/analysis , Intestinal Mucosa/metabolism
5.
Animals (Basel) ; 13(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835626

ABSTRACT

The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.

6.
J Cardiovasc Med (Hagerstown) ; 24(3): 184-190, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36409631

ABSTRACT

AIMS: Minimally invasive mitral valve surgery leads to shorter postoperative recovery time, cosmetic advantages and significant pain reduction compared with the standard sternotomy approach. Both an external aortic clamp and an endoaortic balloon occlusion can be used to manage the ascending aorta and the myocardial protection. In this study, we aimed to compare these two strategies in terms of effectiveness of myocardial protection and associated early postoperative outcomes. METHODS: We investigated the retrospective records of prospectively collected data of patients treated by minimally invasive mitral valve surgery from March 2014 to June 2019. A total of 180 cases (78 in the external aortic clamp group and 102 in the endoaortic balloon clamp group) were collected. A propensity weighting analysis was adopted to adjust for baseline variables. RESULTS: The endoaortic balloon clamp presented higher EuroSCORE II (higher reoperative surgery rate). The intra- and postoperative data were similar between the two groups: the postoperative troponin-I levels, peak of serum lactates and rate of myocardial infarction were also comparable. The endoaortic clamp group recorded longer operative, cardiopulmonary bypass and cross-clamp times. The external clamp group showed a higher rate of postoperative atrial fibrillation and conduction block. CONCLUSIONS: In experienced centers, the use of the endoaortic balloon clamp is safe, reproducible and comparable to the external aortic clamp regarding the effectiveness of myocardial protection: its employment might facilitate minimally invasive mitral valve surgery.


Subject(s)
Cardiac Surgical Procedures , Mitral Valve , Humans , Mitral Valve/surgery , Retrospective Studies , Cardiac Surgical Procedures/adverse effects , Minimally Invasive Surgical Procedures/adverse effects , Aorta/surgery , Treatment Outcome
7.
Biomolecules ; 12(12)2022 12 10.
Article in English | MEDLINE | ID: mdl-36551277

ABSTRACT

Severe gut motility disorders are characterized by the ineffective propulsion of intestinal contents. As a result, the patients develop disabling/distressful symptoms, such as nausea and vomiting along with altered bowel habits up to radiologically demonstrable intestinal sub-obstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility. This syndrome occurs due to changes altering the morpho-functional integrity of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), the interstitial cells of Cajal (ICC) (mesenchymopathy), and smooth muscle cells (myopathy). In the last years, several genes have been identified in different subsets of CIPO patients. The focus of this review is to cover the most recent update on enteric dysmotility related to CIPO, highlighting (a) forms with predominant underlying neuropathy, (b) forms with predominant myopathy, and (c) mitochondrial disorders with a clear gut dysfunction as part of their clinical phenotype. We will provide a thorough description of the genes that have been proven through recent evidence to cause neuro-(ICC)-myopathies leading to abnormal gut contractility patterns in CIPO. The discovery of susceptibility genes for this severe condition may pave the way for developing target therapies for enteric neuro-(ICC)-myopathies underlying CIPO and other forms of gut dysmotility.


Subject(s)
Gastrointestinal Diseases , Intestinal Pseudo-Obstruction , Neuromuscular Diseases , Humans , Intestinal Pseudo-Obstruction/genetics , Intestinal Pseudo-Obstruction/diagnosis , Chronic Disease , Intestine, Small
8.
Adv Exp Med Biol ; 1383: 9-17, 2022.
Article in English | MEDLINE | ID: mdl-36587142

ABSTRACT

Severe gut motility disorders are characterized by ineffective propulsion of intestinal contents. As a result, patients often develop extremely uncomfortable symptoms, ranging from nausea and vomiting along with alterations of bowel habits, up to radiologically confirmed subobstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility due to morphological and functional alterations of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), interstitial cells of Cajal (ICCs) (mesenchymopathy), and smooth muscle cells (myopathy). In this chapter, we highlight some molecular mechanisms of CIPO and review the clinical phenotypes and the genetics of the different types of CIPO. Specifically, we will detail the role of some of the most representative genetic mutations involving RAD21, LIG3, and ACTG2 to provide a better understanding of CIPO and related underlying neuropathic or myopathic histopathological abnormalities. This knowledge may unveil targeted strategies to better manage patients with such severe disease.


Subject(s)
Intestinal Pseudo-Obstruction , Humans , Intestinal Pseudo-Obstruction/genetics , Intestinal Pseudo-Obstruction/diagnosis , Intestine, Small , Mutation , Chronic Disease , Gastrointestinal Motility/genetics
9.
Front Physiol ; 13: 970034, 2022.
Article in English | MEDLINE | ID: mdl-36134328

ABSTRACT

Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils' regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to co-expressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers' regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes.

10.
Animals (Basel) ; 11(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34944178

ABSTRACT

The current work was designed to assess the effect of feed supplemented with essential oils (EOs) on the histological features in sea bass's gastric mucosa. Fish were fed three diets: control diet (CTR), HERBAL MIX® made with natural EOs (N-EOs), or HERBAL MIX® made with artificial EOs obtained by synthesis (S-EOs) during a 117-day feeding trial. Thereafter, the oxyntopeptic cells (OPs) and the ghrelin (GHR) and somatostatin (SOM) enteroendocrine cells (EECs) in the gastric mucosa were evaluated. The Na+K+-ATPase antibody was used to label OPs, while, for the EECs, anti-SOM and anti-GHR antibody were used. The highest density of OP immunoreactive (IR) area was in the CTR group (0.66 mm2 ± 0.1). The OP-IR area was reduced in the N-EO diet group (0.22 mm2 ± 1; CTR vs. N-EOs, p < 0.005), while in the S-EO diet group (0.39 mm2 ± 1) a trend was observed. We observed an increase of the number of SOM-IR cells in the N-EO diet (15.6 ± 4.2) compared to that in the CTR (11.8 ± 3.7) (N-EOs vs. CTR; p < 0.05), but not in the S-EOs diet. These observations will provide a basis to advance current knowledge on the anatomy and digestive physiology of this species in relation to pro-heath feeds.

11.
Eur J Histochem ; 65(s1)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34818877

ABSTRACT

The enteric nervous system (ENS) is the third division of the autonomic autonomic nervous system and the largest collection of neurons outside the central nervous system (CNS). The ENS has been referred to as "the brain in the gut" or "the second brain of the human body" because of its highly integrated neural circuits controlling a vast repertoire of gut functions, including absorption/secretion, splanchnic blood vessels, some immunological aspects, intestinal epithelial barrier, and gastrointestinal (GI) motility. The latter function is the result of the ENS fine-tuning over smooth musculature, along with the contribution of other key cells, such as enteric glia (astrocyte like cells supporting and contributing to neuronal activity), interstitial cells of Cajal (the pacemaker cells of the GI tract involved in neuromuscular transmission), and enteroendocrine cells (releasing bioactive substances, which affect gut physiology). Any noxa insult perturbing the ENS complexity may determine a neuropathy with variable degree of neuro-muscular dysfunction. In this review, we aim to cover the most recent update on genetic mechanisms leading to enteric neuropathies ranging from Hirschsprung's disease (characterized by lack of any enteric neurons in the gut wall) up to more generalized form of dysmotility such as chronic intestinal pseudo-obstruction (CIPO) with a significant reduction of enteric neurons. In this line, we will discuss the role of the RAD21 mutation, which we have demonstrated in a family whose affected members exhibited severe gut dysmotility. Other genes contributing to gut motility abnormalities will also be presented. In conclusion, the knowledge on the molecular mechanisms involved in enteric neuropathy may unveil strategies to better manage patients with neurogenic gut dysmotility and pave the way to targeted therapies.


Subject(s)
Gastrointestinal Motility/genetics , Intestinal Diseases/genetics , Intestinal Pseudo-Obstruction/genetics , Animals , Gastrointestinal Motility/physiology , Humans , Intestinal Diseases/physiopathology , Intestinal Pseudo-Obstruction/physiopathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mutation , Neurons/physiology
12.
Cell Tissue Res ; 383(2): 645-654, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32965550

ABSTRACT

The enteric nervous system (ENS) controls gastrointestinal functions. In large mammals' intestine, it comprises an inner (ISP) and outer (OSP) submucous plexus and a myenteric plexus (MP). This study quantifies enteric neurons in the ISP, OSP, and MP of the pig ascending (AC) and descending colon (DC) using the HuC/D, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) neuronal markers in whole mount preparations with multiple labeling immunofluorescence. We established that the ISP contains the highest number of HuC/D neurons/mm2, which were more abundant in AC vs. DC, followed by OSP and MP with similar density in AC and DC. In the ISP, the density of ChAT immunoreactive (IR) neurons was very similar in AC and DC (31% and 35%), nNOS-IR neurons were less abundant in AC than DC (15% vs. 42%, P < 0.001), and ChAT/nNOS-IR neurons were 5% and 10%, respectively. In the OSP, 39-44% of neurons were ChAT-IR in AC and DC, while 45% and 38% were nNOS-IR and 10-12% were ChAT/nNOS-IR (AC vs. DC P < 0.05). In the MP, ChAT-IR neurons were 44% in AC and 54% in DC (P < 0.05), nNOS-IR neurons were 50% in both, and ChAT/nNOS-IR neurons were 12 and 18%, respectively. The ENS architecture with multilayered submucosal plexuses and the distribution of functionally distinct groups of neurons in the pig colon are similar to humans, supporting the suitability of the pig as a model and providing the platform for investigating the mechanisms underlying human colonic diseases.


Subject(s)
Choline O-Acetyltransferase/immunology , Colon/innervation , Enteric Nervous System/cytology , Myenteric Plexus/cytology , Neurons/enzymology , Nitric Oxide Synthase/immunology , Submucous Plexus/cytology , Animals , Cell Count , Male , Swine , Swine, Miniature
13.
Anat Rec (Hoboken) ; 304(2): 372-383, 2021 02.
Article in English | MEDLINE | ID: mdl-32396681

ABSTRACT

The arterial supply of the cat jejunum was studied by gross dissection and polyurethane corrosion cast. The results showed that the jejunal arteries, which originate from the cranial mesenteric artery, varied from 5 to 15 in number. Their number was independent of the length of the cranial mesenteric artery as well as of the length of the jejunum. These arteries divided into branches giving rise to a series of orders of division from a minimum of 1 to a maximum of 7. The last orders of division terminated in a series of anastomosing arcades which resulted in a marginal artery coursing only a few millimeters from the mesenteric margin of the jejunum. This artery gave rise to straight arteries (vasa recta), whose mean number was 450 ± 60. According to their length, the vasa recta can be differentiated into short (vasa brevia) and long (vasa longa) branches. The vasa brevia ended branching into the mesenteric side of the jejunum whereas the vasa longa coursed beneath the serosa on the lateral jejunal surfaces, and reached the antimesenteric border. During their course, the vasa recta ramified and anastomosed with each other. Numerous antimesenteric anastomoses between opposing vasa longa were also observed. Based on the literature consulted, due to the large number of vasa recta (approximately one vessel per 2.9 mm of jejunal length) and the rich anastomotic network, the cat jejunum might have a better intramural distribution of blood flow and would seem less predisposed to ischemic phenomena than that of other mammals.


Subject(s)
Cats/anatomy & histology , Jejunum/blood supply , Mesenteric Arteries/anatomy & histology , Animals
14.
Animals (Basel) ; 10(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585889

ABSTRACT

The present study aimed to evaluate the muscle fiber metabolism and assess the presence and distribution of both procollagen and collagen type III in pectoralis major muscles affected by white striping (WS), wooden breast (WB), and spaghetti meat (SM), as well as in those with macroscopically normal appearance (NORM). For this purpose, 20 pectoralis major muscles (five per group) were selected from the same flock of fast-growing broilers (Ross 308, males, 45-days-old, 3.0 kg live weight) and were used for histochemical (nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) and alpha-glycerophosphate dehydrogenase (α-GPD)) and immunohistochemical (procollagen and collagen type III) analyses. When compared to NORM, we found an increased proportion (p < 0.001) of fibers positively stained to NADH-TR in myopathic muscles along with a relevant decrease (p < 0.001) in the percentage of those exhibiting a positive reaction to α-GPD. In addition, an increased proportion of fibers exhibiting a positive reaction to both stainings was observed in SM, in comparison with NORM (14.3 vs. 7.2%; p < 0.001). After reacting to NADH-TR, SM exhibited the lowest (p < 0.001) cross-sectional area (CSA) of the fibers (-12% with respect to NORM). On the other hand, after reacting to α-GPD, the CSA of WS was found to be significantly larger (+10%) in comparison with NORM (7480 vs. 6776 µm2; p < 0.05). A profound modification of the connective tissue architecture involving a different presence and distribution of procollagen and collagen type III was observed. Intriguingly, an altered metabolism and differences in the presence and distribution of procollagen and collagen type III were even observed in pectoralis major muscle classified as NORM.

15.
J Anim Sci Biotechnol ; 10: 74, 2019.
Article in English | MEDLINE | ID: mdl-31528339

ABSTRACT

BACKGROUND: Probiosis is considered a potential strategy to reduce antibiotics use and prevent post-weaning diarrhea (PWD). This study investigated the effect of Bacillus amyloliquefaciens DSM25840 or Bacillus subtilis DSM25841 supplementation on growth, health, immunity, intestinal functionality and microbial profile of post-weaning pigs after enterotoxigenic E. coli (ETEC) F4 challenge. METHODS: Sixty-four post-weaning piglets (7748 g ± 643 g) were randomly allocated to four groups: control basal diet (CO); CO + 1.28 × 106 CFU/g of B. amyloliquefaciens (BAA); CO + 1.28 × 106 CFU/g feed of B. subtilis (BAS); CO + 1 g colistin/kg of feed (AB). At day (d) 7, animals were challenged with 105 CFU/mL of ETEC F4ac O149 and then followed for fecal score and performance until d 21. Blood was collected at d 6, d 12 and d 21 for immunoglobulins, at d 8 for acute phase proteins, at d 8 and d 21 for metabolomics analysis. Jejunum was sampled for morphometry, quantification of apoptosis, cell proliferation, neutral and acid mucine and IgA secretory cells, and microarray analysis at d 21. Jejunum and cecum contents were collected for microbiota at d 21. RESULTS: AB and BAS reduced the fecal score impairment compared to CO (P < 0.05) at d 14. Body weight (BW), average daily weight gain (ADWG), average daily feed intake (ADFI) and gain to feed ratio (G:F) did not differ between Bacillus groups and CO. AB improved BW at d 7, d 14 and d 21, ADWG ADFI and G:F from d 0 to d 7 (P < 0.05). At d 8, CO had higher plasma arginine, lysine, ornithine, glycine, serine and threonine than other groups, and higher haptoglobin than AB (P < 0.05). At d 21, CO had lower blood glycine, glutamine and IgA than BAS. Morphology, cells apoptosis and mucins did not differ. BAS and AB increased the villus mitotic index. Transcriptome profile of BAS and AB were more similar than CO. Gene sets related to adaptive immune response were enriched in BAA, BAS and AB. CO had enriched gene set for nuclear structure and RNA processing. CO had a trend of higher Enterobacteriaceae in cecum than the other groups (P = 0.06). CONCLUSION: Bacillus subtilis DSM25841 treatment may reduce ETEC F4ac infection in weaned piglets, decreasing diarrhea and influencing mucosal transcriptomic profile.

16.
Avian Pathol ; 48(1): 1-3, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30246553

ABSTRACT

Selection for fast-growing and high-breast-yield hybrids has enormously increased the pressure on muscle development rate and mass, indirectly promoting the development of muscular abnormalities affecting the pectoral muscles such as White Striping, Wooden Breast and Spaghetti Meat. Macroscopically, the muscles affected by these defects exhibit distinctive traits, whereas the microscopic examinations evidenced similar histological alterations. Therefore, a common causative mechanism (involving genes related to several metabolic pathways and functional categories) underpinning the occurrence of these abnormalities may be hypothesized and directly associated with muscle hypertrophy induced by selection. Within this context, as the occurrence of growth-related abnormalities may negatively affect consumer attitude and certainly leads to considerable economic losses, resulting from meat downgrading, it clearly emphasizes the need to consider those issues related to muscle growth and meat quality when selecting meat-type genotypes.


Subject(s)
Chickens/abnormalities , Poultry Diseases/pathology , Poultry/abnormalities , Animals , Chickens/genetics , Genotype , Pectoralis Muscles/pathology , Phenotype
17.
Front Physiol ; 10: 1581, 2019.
Article in English | MEDLINE | ID: mdl-32009982

ABSTRACT

Desmin (DES) and Vimentin (VIM) exert an essential role in maintaining muscle cytoarchitecture and since are considered reliable markers for muscle regeneration, their expression has been extensively investigated in dystrophic muscles. Thus, exhibiting features similar to those of human dystrophic muscles, the present study aimed at assessing the distribution of VIM and DES proteins and the expression of the corresponding genes in Pectoralis major muscles affected by white striping (WS), wooden breast (WB), and spaghetti meat (SM) abnormalities as well as in those having macroscopically normal appearance (NORM). For this purpose, 20 Pectoralis major muscles (5/group) were collected from the same flock of fast-growing broilers to perform immunohistochemistry, immunoblotting and gene expression. Immunohistochemical analyses showed an increased number of fibers immunoreactive to both VIM and DES in WS and WB, while only a few immunoreactive fibers were observed in NORM. Concerning the protein level, if compared with NORM, a 55% increase in VIM content was found in WB affected cases (P < 0.05) thus suggesting the development of intense regenerative processes in an early-stage within these muscles. The significantly higher amount of DES (+53%) found in WS might be attributed to a progression of the regenerative processes that require its synthesis to preserve the structural organization of the developing fibers. On the other hand, significantly lower VIM and DES contents were found in SM. About gene expression, VIM mRNA levels gradually increased from the NORM to the SM group, with significantly higher gene expressions in WB and SM samples compared to the NORM group (P = 0.009 for WB vs. NORM and P = 0.004 for SM vs. NORM). Similarly, the expression of DES gene showed an increase from the NORM to WB group (P = 0.05). Overall, the findings of the present study suggest that intense regenerative processes take place in both WB and WS muscles although a different progression of regeneration might be hypothesized. On the other hand, the lack of correspondence between VIM gene expression and its protein product observed in SM suggests that VIM may also exert a role in the development of the SM phenotype.

18.
Poult Sci ; 96(9): 3465-3472, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28595272

ABSTRACT

Recently the poultry industry faced an emerging muscle abnormality termed wooden breast (WB), the prevalence of which has dramatically increased in the past few years. Considering the incomplete knowledge concerning this condition and the lack of information on possible variations due to the intra-fillet sampling locations (superficial vs. deep position) and aging of the samples, this study aimed at investigating the effect of 7-d storage of broiler breast muscles on histology, texture, and particle size distribution, evaluating whether the sampling position exerts a relevant role in determining the main features of WB. With regard to the histological observations, severe myodegeneration accompanied by accumulation of connective tissue was observed within the WB cases, irrespective of the intra-fillet sampling position. No changes in the histological traits took place during the aging in either the normal or the WB samples. As to textural traits, although a progressive tenderization process took place during storage (P ≤ 0.001), the differences among the groups were mainly detected when raw meat rather than cooked was analyzed, with the WB samples exhibiting the highest (P ≤ 0.001) 80% compression values. In spite of the increased amount of connective tissue components in the WB cases, their thermally labile cross-links will account for the similar compression and shear-force values as normal breast cases when measured on cooked samples. Similarly, the enlargement of extracellular matrix and fibrosis might contribute in explaining the different fragmentation patterns observed between the superficial and the deep layer in the WB samples, with the superficial part exhibiting a higher amount of larger particles and an increase in particles with larger size during storage, compared to normal breasts.


Subject(s)
Meat/analysis , Pectoralis Muscles/physiology , Refrigeration , Animals , Chickens/abnormalities , Food Storage , Particle Size , Pectoralis Muscles/abnormalities , Pectoralis Muscles/cytology
20.
PLoS One ; 11(2): e0147468, 2016.
Article in English | MEDLINE | ID: mdl-26866366

ABSTRACT

Bitter taste receptors (T2Rs) are expressed in the mammalian gastrointestinal mucosa. In the mouse colon, T2R138 is localized to enteroendocrine cells and is upregulated by long-term high fat diet that induces obesity. The aims of this study were to test whether T2R38 expression is altered in overweight/obese (OW/OB) compared to normal weight (NW) subjects and characterize the cell types expressing T2R38, the human counterpart of mouse T2R138, in human colon. Colonic mucosal biopsies were obtained during colonoscopy from 35 healthy subjects (20 OW/OB and 15 NW) and processed for quantitative RT-PCR and immunohistochemistry using antibodies to T2R38, chromogranin A (CgA), glucagon like peptide-1 (GLP-1), cholecystokinin (CCK), or peptide YY (PYY). T2R38 mRNA levels in the colonic mucosa of OW/OB were increased (> 2 fold) compared to NW subjects but did not reach statistical significance (P = 0.06). However, the number of T2R38 immunoreactive (IR) cells was significantly increased in OW/OB vs. NW subjects (P = 0.01) and was significantly correlated with BMI values (r = 0.7557; P = 0.001). In both OW/OB and NW individuals, all T2R38-IR cells contained CgA-IR supporting they are enteroendocrine. In both groups, T2R38-IR colocalized with CCK-, GLP1- or PYY-IR. The overall CgA-IR cell population was comparable in OW/OB and NW individuals. This study shows that T2R38 is expressed in distinct populations of enteroendocrine cells in the human colonic mucosa and supports T2R38 upregulation in OW/OB subjects. T2R38 might mediate host functional responses to increased energy balance and intraluminal changes occurring in obesity, which could involve peptide release from enteroendocrine cells.


Subject(s)
Colon/cytology , Enteroendocrine Cells/metabolism , Intestinal Mucosa/cytology , Overweight/metabolism , Receptors, G-Protein-Coupled/analysis , Adult , Cholecystokinin/analysis , Chromogranin A/analysis , Colon/chemistry , Colon/pathology , Female , Glucagon-Like Peptide 1/analysis , Humans , Intestinal Mucosa/chemistry , Male , Middle Aged , Obesity/metabolism , Obesity/pathology , Overweight/pathology , Peptide YY/analysis , RNA, Messenger/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...