Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Article in English | MEDLINE | ID: mdl-38497794

ABSTRACT

AIMS: Evidence on the epidemiology and prognostic significance of mitral regurgitation (MR) and tricuspid regurgitation (TR) in patients with cardiac amyloidosis (CA) is scarce. METHODS AND RESULTS: Overall, 538 patients with either transthyretin (ATTR, n = 359) or immunoglobulin light-chain (AL, n = 179) CA were included at three Italian referral centres. Patients were stratified according to isolated or combined moderate/severe MR and TR. Overall, 240 patients (44.6%) had no significant MR/TR, 112 (20.8%) isolated MR, 66 (12.3%) isolated TR, and 120 (22.3%) combined MR/TR. The most common aetiologies were atrial functional MR, followed by primary infiltrative MR, and secondary TR due to right ventricular (RV) overload followed by atrial functional TR. Patients with isolated or combined MR/TR had a more frequent history of heart failure (HF) hospitalization and atrial fibrillation, worse symptoms, and higher levels of NT-proBNP as compared to those without MR/TR. They also presented more severe atrial enlargement, atrial peak longitudinal strain impairment, left ventricular (LV) and RV systolic dysfunction, and higher pulmonary artery systolic pressures. TR carried the most advanced features. After adjustment for age, sex, CA subtypes, laboratory, and echocardiographic markers of CA severity, isolated TR and combined MR/TR were independently associated with an increased risk of all-cause death or worsening HF events, compared to no significant MR/TR [adjusted HR 2.75 (1.78-4.24) and 2.31 (1.44-3.70), respectively]. CONCLUSION: In a large cohort of patients with CA, MR, and TR were common. Isolated TR and combined MR/TR were associated with worse prognosis regardless of CA aetiology, LV, and RV function, with TR carrying the highest risk.

3.
J Oral Microbiol ; 15(1): 2223477, 2023.
Article in English | MEDLINE | ID: mdl-37346998

ABSTRACT

Dental unit waterlines (DUWLs) represent a complex environment able to promote microbial contamination, due to functional, mechanical and practical risk factors. According to a water safety plan approach, the main goal is to preserve the health of dentists, dental staff and patients. The aim of this study is to develop a DUWLs water safety plan that is able to support correct and effective maintenance and disinfection procedures. Three different water systems serve 60 dental chairs: (i) water that comes directly from municipal water (Type A), (ii) water supplied by municipal water and water bottles (Type B) and (iii) water supplied only via water bottles (Type C). For each type, Legionella and Pseudomonas aeruginosa contamination was studied, by applying a new sampling scheme, based on separate sampling from water bottles, cup filler and handpieces. Type B DUWL is the only type of DUWL contaminated by L. pneumophila (ST 59) and L. anisa (mean contamination: 608.33 ± 253.33 cfu/L) detected in cup filler and handpieces, as well as the high presence of P. aeruginosa (44.42 ± 13.25 cfu/100 mL). Two subsequent shock treatments and resampling procedures were performed by increasing disinfectant dosage and contact time and removing some DUWL components linked to biofilm growth in DUWLs. A significant reduction of contamination was obtained for both microorganisms (Legionella spp.: -100%, p < 0.001 and P. aeruginosa: -99.86%, p = 0.006). The sampling strategy proposed allows us to identify the source of contamination and better focus on the maintenance and disinfection procedures. DUWLs represent an environment that requires a multidisciplinary approach, combining the knowledge of all DUWL components to correct procedures that are able to preserve the health of personnel and patients, as well as guaranteeing DUWLs' safe functionality.

5.
Article in English | MEDLINE | ID: mdl-36173731

ABSTRACT

Legionella-like isolates, strains 27fs60, 30fs61 and 30cs62T, were isolated from a hotel water distribution system in the Emilia-Romagna region, Italy. Isolates were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, with transitory flagella presence and able to grow at 32-37 °C (with an optimum at 32 °C) on buffered charcoal-yeast extract agar with l-cysteine, glycine-vancomycin-polymyxin B-cycloheximide agar and Wadowsky-Yee medium agar. The strains showed positive reactions for oxidase, hippurate and gelatinase and a weakly positive reaction for catalase. Based on the EUCAST cut-off, strain 30cs62T was resistant to ciprofloxacin (5 mg l-1). The mip and rpoB gene sequences of the three strains showed close matches to those of Legionella quateirensis ATCC 49507T with similarity values of 98.2 and 94.5 %, respectively. Whole genome sequencing of the three strains was performed, resulting in G+C contents of 39.0, 39.1 and 39.0 mol%, respectively. The identity percentage measured by average nucleotide identity between the three strains and their respective closest strains were: 91.32 % L. quateirensis NCTC 12376T, 91.45 % L. quateirensis ATCC 49507T and 91.45 % L. quateirensis ATCC 49507T, respectively. The digital DNA-DNA hybridization analysis demonstrated how the isolates were separated from the most related phylogenetic Legionella species (L. quateirensis ATCC 49507T, ≤40.10 % DNA-DNA relatedness). The concatenated phylogenetic tree based on 16S rRNA, mip, rpoB and rnpB genes, shows a close relationship with L. quateirensis ATCC 49507T. The results obtained confirm the status of an independent species. The name proposed for this species is Legionella bononiensis sp. nov. with 30cs62T (=ATCC TSD-262T=DSM 112526T) as the type strain.


Subject(s)
Legionella , Vancomycin , Agar , Bacterial Typing Techniques , Base Composition , Catalase/genetics , Charcoal , Ciprofloxacin , Cycloheximide , Cysteine/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gelatinases/genetics , Glycine/genetics , Hippurates , Nucleotides , Phylogeny , Polymyxin B/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Water
6.
Front Med (Lausanne) ; 9: 912649, 2022.
Article in English | MEDLINE | ID: mdl-35770012

ABSTRACT

A very rare case of pulmonary Klebsiella pneumoniae-Legionella pneumophila coinfection in a double kidney transplanted man affected by the chronic renal disease is described. Cases of Legionnaires' disease with an incubation period of 14 days have rarely been documented. Despite the long period of hospitalization, typing of clinical and environmental L. pneumophila strains demonstrated that the patient's home water distribution system was the source of infection, highlighting that Legionella house contamination can be a hidden risk, especially for immune-compromised people.

7.
Front Microbiol ; 13: 900936, 2022.
Article in English | MEDLINE | ID: mdl-35770167

ABSTRACT

Legionella surveillance plays a significant role not only to prevent the risk of infection but also to study the ecology of isolates, their characteristics, and how their prevalence changes in the environment. The difficulty in Legionella isolation, identification, and typing results in a low notification rate; therefore, human infection is still underestimated. In addition, during Legionella surveillance, the special attention given to Legionella pneumophila leads to an underestimation of the prevalence and risk of infection for other species. This study describes the workflow performed during environmental Legionella surveillance that resulted in the isolation of two strains, named 8cVS16 and 9fVS26, associated with the genus Legionella. Traditional and novel approaches such as standard culture technique, MALDI-TOF MS, gene sequencing, and whole-genome sequencing (WGS) analysis were combined to demonstrate that isolates belong to a novel species. The strain characteristics, the differences between macrophage infectivity potential (mip), RNA polymerase ß subunit (rpoB), and reference gene sequences, the average nucleotide identity (ANI) of 90.4%, and the DNA-DNA digital hybridization (dDDH) analysis of 43% demonstrate that these isolates belong to a new Legionella species. The finding suggests that, during the culture technique, special attention should be paid to the characteristics of the isolates that are less associated with the Legionella genus in order to investigate the differences found using more sensitive methods. The characterization of the two newly discovered isolates based on morphological, biochemical, and microscopic characteristics is currently underway and will be described in another future study.

9.
Front Microbiol ; 13: 866426, 2022.
Article in English | MEDLINE | ID: mdl-35558114

ABSTRACT

Legionella spp. are Gram-negative bacteria that inhabit freshwater environments representing a serious risk for human health. Legionella pneumophila (Lp) is the species most frequently responsible for a severe pneumonia known as Legionnaires' disease. Lp consists of 15 serogroups (Sgs), usually identified by monoclonal or polyclonal antibodies. With regard to Lp serogrouping, it is well known that phenotyping methods do not have a sufficiently high discriminating power, while genotypic methods although very effective, are expensive and laborious. Recently, mass spectrometry and infrared spectroscopy have proved to be rapid and successful approaches for the microbial identification and typing. Different biomolecules (e.g., lipopolysaccharides) adsorb infrared radiation originating from a specific microbial fingerprint. The development of a classification system based on the intra-species identification features allows a rapid and reliable typing of strains for diagnostic and epidemiological purposes. The aim of the study was the evaluation of Fourier Transform Infrared Spectroscopy using the IR Biotyper® system (Bruker Daltonik, Germany) for the identification of Lp at the serogroup (Sg) level for diagnostic purposes as well as in outbreak events. A large dataset of Lp isolates (n = 133) and ATCC reference strains representing the 15 Lp serogroups were included. The discriminatory power of the instrument's classifier, was tested by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). All isolates were classified as follows: 12/133 (9.0%) as Lp Sg1 and 115/133 (86.5%) as Lp Sg 2-15 (including both ATCC and environmental Lp serogroup). Moreover, a mis-classification for 2/133 (1.5%) isolates of Lp Sg 2-15 that returned as Lp Sg1 was observed, and 4/133 (3.0%) isolates were not classified. An accuracy of 95.49% and an error rate of 4.51% were calculated. IR Biotyper® is able provide a quick and cost-effective reliable Lp classification with advantages compared with agglutination tests that show ambiguous and unspecific results. Further studies including a larger number of isolates could be useful to implement the classifier obtaining a robust and reliable tool for the routine Lp serogrouping. IR Biotyper® could be a powerful and easy-to-use tool to identify Lp Sgs, especially during cluster/outbreak investigations, to trace the source of the infection and promptly adopt preventive and control strategies.

10.
Microbiol Resour Announc ; 11(2): e0115221, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35142544

ABSTRACT

We report the draft genome sequences of an environmental Legionella strain isolated from an industrial water distribution system in Italy. Macrophage infectivity potentiator (mip) and ß-subunit of RNA polymerase (rpoB) genes were used to perform the species identification. Whole-genome sequencing (WGS) and average nucleotide identity (ANI) identified the isolate as belonging to a presumptive novel Legionella species, with a genome length of 3,281,851 bp.

11.
Microb Ecol ; 83(2): 353-362, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34091718

ABSTRACT

In man-made water distribution systems, Legionella community interactions remain unknown, due to their ability to change from sessile to planktonic states or live in viable but non-culturable forms, in response to anthropic and environmental stress. During 7 years of hospital Legionella surveillance, in 191 hot water positive samples, the interactions among the Legionella species, temperature, and disinfection treatment were evaluated. Legionella was isolated following ISO 11731:2017, and identification was performed by mip gene sequencing and sequence-based typing (SBT) for L. anisa or L. rubrilucens and L. pneumophila, respectively. The species with the higher frequency of isolation was L. pneumophila serogroup 1 (78.53%; 4865.36 ± 25,479.11 cfu/L), followed by L. anisa (54.45%; 558.79 ± 2637.41 cfu/L) and L. rubrilucens (21.99%; 307.73 ± 1574.95 cfu/L), which were sometimes present together. Spearman's rho correlation test was conducted among the species with respect to temperature and disinfectant (H2O2/Ag+). The results showed a generally positive interaction among these species sharing the same environment, except for competition between L. anisa and L. rubrilucens. High temperature (48.83 ± 2.59 °C) and disinfection treatment (11.58 ± 4.99 mg/L) affected the presence of these species. An exception was observed with L. anisa, which showed disinfection treatment resistance. For the purposes of environmental surveillance, it is fundamental to better understand the interactions and dynamic of the Legionella community in man-made water systems in order to choose the proper physical or chemical treatments. The simultaneous presence of different Legionella species could result in an increased resistance to high temperature and disinfectant treatment, leading to changes in contamination level and species diversity.


Subject(s)
Legionella pneumophila , Legionella , Disinfection/methods , Humans , Hydrogen Peroxide , Legionella pneumophila/genetics , Temperature , Water Microbiology
12.
Microbiol Spectr ; 9(3): e0116121, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908503

ABSTRACT

The identification of Legionella non-pneumophila species (non-Lp) in clinical and environmental samples is based on the mip gene, although several studies suggest its limitations and the need to expand the classification scheme to include other genes. In this study, the development of a new classification scheme targeting the rpoB gene is proposed to obtain a more reliable identification of 135 Legionella environmental isolates. All isolates were sequenced for the mip and rpoB genes, and the results were compared to study the discriminatory power of the proposed rpoB scheme. Complete concordance between the mip and rpoB results based on genomic percent identity was found for 121/135 (89.6%) isolates; in contrast, discordance was found for 14/135 (10.4%) isolates. Additionally, due to the lack of reference values for the rpoB gene, inter- and intraspecies variation intervals were calculated based on a pairwise identity matrix that was built using the entire rpoB gene (∼4,107 bp) and a partial region (329 bp) to better evaluate the genomic identity obtained. The interspecies variation interval found here (4.9% to 26.7%) was then proposed as a useful sequence-based classification scheme for the identification of unknown non-Lp isolates. The results suggest that using both the mip and rpoB genes makes it possible to correctly discriminate between several species, allowing possible new species to be identified, as confirmed by preliminary whole-genome sequencing analyses performed on our isolates. Therefore, starting from a valid and reliable identification approach, the simultaneous use of mip and rpoB associated with other genes, as it occurs with the sequence-based typing (SBT) scheme developed for Legionella pneumophila, could support the development of multilocus sequence typing to improve the knowledge and discovery of Legionella species subtypes. IMPORTANCELegionella spp. are a widely spread bacteria that cause a fatal form of pneumonia. While traditional laboratory techniques have provided valuable systems for Legionella pneumophila identification, the amplification of the mip gene has been recognized as the only useful tool for Legionella non-pneumophila species identification both in clinical and environmental samples. Several studies focused on the mip gene classification scheme showed its limitations and the need to improve the classification scheme, including other genes. Our study provides significant advantages on Legionella identification, providing a reproducible new rpoB gene classification scheme that seems to be more accurate than mip gene sequencing, bringing out greater genetic variation on Legionella species. In addition, the combined use of both the mip and rpoB genes allowed us to identify presumed new Legionella species, improving epidemiological investigations and acquiring new understanding on Legionella fields.


Subject(s)
Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Legionella/classification , Legionella/genetics , Legionellosis/diagnosis , Multilocus Sequence Typing/methods , Peptidylprolyl Isomerase/genetics , Genome, Bacterial/genetics , Genotyping Techniques/methods , Humans , Legionella/isolation & purification , Legionellosis/microbiology , Nucleic Acid Amplification Techniques , Whole Genome Sequencing
13.
Pathogens ; 10(5)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063633

ABSTRACT

Legionella species distribution in the Emilia-Romagna region, involving hospital (H) and community (C) environments, was conducted. Legionella culture, agglutination test, and mip-gene sequencing were applied on 240 isolates. The analysis showed a higher prevalence of non-Legionellapneumophila (n-Lp) species (84.1%) compared with L. pneumophila (Lp) (15.9%), with a higher frequency of n-Lp with respect to Lp species in both environments (77.6% and 96.4%, in H and C, respectively). The Shannon index showed a significant difference in Legionella distribution (p = 0.00017), with a significant abundance of Lp in the H compared with C environment (p = 0.00028). The continuous disinfection treatment in H could contribute to adaptive survival of the Lp species. Phylogenetic analysis revealed a conservative clade distribution between H and C: L. feeleii clade with three subclades in C and the Lp clade with five subclades in H and two in C, respectively. Our findings suggest the importance of Legionella surveillance both in H and C, with a focus on n-Lp species less connected to human disease. The Legionella prevalence and diversity found here indicate that geographical and temporal isolate evolution should be considered during surveillance, particularly in the light of global warming and changes in population risk factors.

14.
Microbiol Resour Announc ; 10(19)2021 May 13.
Article in English | MEDLINE | ID: mdl-33986093

ABSTRACT

We present the draft genome sequences of three Legionella strains that were isolated from a hotel water distribution system. Legionella species identification was performed by macrophage infectivity potentiator (mip) and RNA polymerase ß subunit (rpoB) gene sequencing. Whole-genome sequencing and average nucleotide identity results supported the hypothesis of new Legionella species isolation.

15.
Article in English | MEDLINE | ID: mdl-33233464

ABSTRACT

In this study, we aimed to associate the molecular typing of Legionella isolates with a culture technique during routine Legionella hospital environmental surveillance in hot water distribution systems (HWDSs) to develop a risk map able to be used to prevent nosocomial infections and formulate appropriate preventive measures. Hot water samples were cultured according to ISO 11731:2017. The isolates were serotyped using an agglutination test and genotyped by sequence-based typing (SBT) for Legionella pneumophila or macrophage infectivity potentiator (mip) gene sequencing for non-pneumophila Legionella species. The isolates' relationship was phylogenetically analyzed. The Legionella distribution and level of contamination were studied in relation to temperature and disinfectant residues. The culture technique detected 62.21% of Legionella positive samples, characterized by L. pneumophila serogroup 1, Legionella non-pneumophila, or both simultaneously. The SBT assigned two sequence types (STs): ST1, the most prevalent in Italy, and ST104, which had never been isolated before. The mip gene sequencing detected L. anisa and L. rubrilucens. The phylogenetic analysis showed distinct clusters for each species. The distribution of Legionella isolates showed significant differences between buildings, with a negative correlation between the measured level of contamination, disinfectant, and temperature. The Legionella molecular approach introduced in HWDSs environmental surveillance permits (i) a risk map to be outlined that can help formulate appropriate disinfection strategies and (ii) rapid epidemiological investigations to quickly identify the source of Legionella infections.


Subject(s)
Environmental Monitoring/methods , Legionella/classification , Legionella/genetics , Legionnaires' Disease/microbiology , DNA, Bacterial/genetics , Hospitals , Humans , Italy , Legionella/isolation & purification , Legionella pneumophila/genetics , Molecular Typing , Phylogeny , Sequence Analysis, DNA/methods , Serotyping/methods , Water Microbiology , Water Supply
16.
PLoS One ; 15(11): e0241756, 2020.
Article in English | MEDLINE | ID: mdl-33147266

ABSTRACT

Sit Bath Systems (SBSs) are the most common hygiene method for patients who are not self-sufficient. Therefore, the water quality of SBSs in the nosocomial environment plays a fundamental role in controlling infections for both patients and health-care workers. A long-term study on Legionella and Pseudomonas aeruginosa (P. aeruginosa) contamination was performed in SBSs (n = 20) of six Health Care Facilities (HCFs). A total of 254 water samples were analyzed following ISO procedures. The samples were positive for P. aeruginosa (46.85%) and Legionella (53.54%), respectively, both over the directive limits. Legionella isolates were identified as: Legionella pneumophila (L. pneumophila) serogroups 1, 3, and 6 and Legionella non-pneumophila species (L. anisa, L. londiniensis, L. rubrilucens, and L. nagelii). Moreover, the contamination found was studied with respect to median temperature measured (42 °C), from which two groups (A and B) could be distinguished. P. aeruginosa was found in both groups (100% of SBSs), while a higher percentage of Legionella positive samples was found in group A (75% of SBSs), compared to group B (50% of SBSs), showing how Legionella control could be carried out by using temperatures above 42 °C. An analysis of SBS water pipelines, maintenance, and disinfection treatments indicates SBSs as a new source of infection risk for both patients and health-care workers.


Subject(s)
Health Facilities , Legionella/isolation & purification , Water Microbiology , Bacterial Proteins/genetics , Cross Infection/microbiology , Cross Infection/pathology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Humans , Legionella/genetics , Legionella pneumophila/genetics , Legionella pneumophila/isolation & purification , Legionellosis/microbiology , Legionellosis/pathology , Legionnaires' Disease/microbiology , Legionnaires' Disease/pathology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Risk Factors , Serogroup , Temperature
17.
Pathogens ; 9(9)2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32842454

ABSTRACT

Detection and enumeration of Legionella in water samples is of great importance for risk assessment analysis. The plate culture method is the gold standard, but has received several well-known criticisms, which have induced researchers to develop alternative methods. The purpose of this study was to compare Legionella counts obtained by the analysis of potable water samples through the plate culture method and through the IDEXX liquid culture Legiolert method. Legionella plate culture, according to ISO 11731:1998, was performed using 1 L of water. Legiolert was performed using both the 10 mL and 100 mL Legiolert protocols. Overall, 123 potable water samples were analyzed. Thirty-seven (30%) of them, positive for L. pneumophila, serogroups 1 or 2-14 by plate culture, were used for comparison with the Legiolert results. The Legiolert 10 mL test detected 34 positive samples (27.6%) and the Legiolert 100 mL test detected 37 positive samples, 27.6% and 30% respectively, out of the total samples analyzed. No significant difference was found between either the Legiolert 10 mL and Legiolert 100 mL vs. the plate culture (p = 0.9 and p = 0.3, respectively) or between the Legiolert 10 mL and Legiolert 100 mL tests (p = 0.83). This study confirms the reliability of the IDEXX Legiolert test for Legionella pneumophila detection and enumeration, as already shown in similar studies. Like the plate culture method, the Legiolert assay is also suitable for obtaining isolates for typing purposes, relevant for epidemiological investigations.

18.
Pathogens ; 9(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516992

ABSTRACT

Surgical handwashing is a mandatory practice to protect both surgeons and patients in order to control Healthcare-Associated Infections (HAIs). The study is focused on Legionella and Pseudomonas aeruginosa contamination in Surgical Handwashing Outlets (SHWOs) provided by sensor-activated faucets with Thermostatic Mixer Valves (TMVs), as correlated to temperature, technologies, and disinfection used. Samples were analyzed by standard culture techniques, comparing hot- and cold-water samples. Legionella isolates were typed by an agglutination test and by mip sequencing. Legionella contamination showed the same distribution between hot and cold samples concerning positive samples and mean concentration: 44.5% and 1.94 Log10 cfu/L vs. 42.6% and 1.81 Log10 cfu/L, respectively. Regarding the distribution of isolates (Legionella pneumophila vs. Legionella non-pneumophila species), significant differences were found between hot- and cold-positive samples. The contamination found in relation to ranges of temperature showed the main positive samples (47.1%) between 45.1-49.6 °C, corresponding to high Legionella concentrations (2.17 Log10 cfu/L). In contrast, an increase of temperature (>49.6 °C) led to a decrease in positive samples (23.2%) and mean concentration (1.64 Log10 cfu/L). A low level of Pseudomonas aeruginosa was found. For SHWOs located in critical areas, lack of consideration of technologies used and uncorrected disinfection protocols may lead to the development of a high-risk environment for both patients and surgeons.

19.
Front Microbiol ; 11: 589369, 2020.
Article in English | MEDLINE | ID: mdl-33384668

ABSTRACT

Legionella spp. are widespread bacteria in aquatic environments with a growing impact on human health. Between the 61 species, Legionella pneumophila is the most prevalent in human diseases; on the contrary, Legionella non-pneumophila species are less detected in clinical diagnosis or during environmental surveillance due to their slow growth in culture and the absence of specific and rapid diagnostic/analytical tools. Reliable and rapid isolate identification is essential to estimate the source of infection, to undertake containment measures, and to determine clinical treatment. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), since its introduction into the routine diagnostics of laboratories, represents a widely accepted method for the identification of different bacteria species, described in a few studies on the Legionella clinical and environmental surveillance. The focus of this study was the improvement of MALDI-TOF MS on Legionella non-pneumophila species collected during Legionella nosocomial and community surveillance. Comparative analysis with cultural and mip-gene sequencing results was performed. Moreover, a phylogenetic analysis was carried out to estimate the correlations amongst isolates. MALDI-TOF MS achieved correct species-level identification for 45.0% of the isolates belonging to the Legionella anisa, Legionella rubrilucens, Legionella feeleii, and Legionella jordanis species, displaying a high concordance with the mip-gene sequencing results. In contrast, less reliable identification was found for the remaining 55.0% of the isolates, corresponding to the samples belonging to species not yet included in the database. The phylogenetic analysis showed relevant differences inside the species, regruped in three main clades; among the Legionella anisa clade, a subclade with a divergence of 3.3% from the main clade was observed. Moreover, one isolate, identified as Legionella quinlivanii, displayed a divergence of 3.8% from the corresponding reference strain. However, these findings require supplementary investigation. The results encourage the implementation of MALDI-TOF MS in routine diagnostics and environmental Legionella surveillance, as it displays a reliable and faster identification at the species level, as well as the potential to identify species that are not yet included in the database. Moreover, phylogenetic analysis is a relevant approach to correlate the isolates and to track their spread, especially in unconventional reservoirs, where Legionella prevention is still underestimated.

20.
Article in English | MEDLINE | ID: mdl-30669329

ABSTRACT

The use of microfiltered water dispensers (MWDs) for treatment of municipal water is increasing rapidly, however, the water quality produced by MWDs has not been widely investigated. In this work a large-scale microbiological investigation was conducted on 46 MWDs. In accordance with Italian regulations for drinking water, we investigated the heterotrophic plate counts at 36 and 22 °C for indicator bacteria and pathogenic bacteria, such as Enterococci, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. Two different MWDs were compared: Type A with Ag⁺ coated carbon filter and two ultraviolet (UV) lamps, and Type B with a carbon filter and one UV lamp. For each type, the contamination of the input and output points was analyzed. Our findings showed that MWDs are a source of bacteria growth, with output being more contaminated than the input point. Type B was widely contaminated for all parameters tested in both sampling points, suggesting that water treatment by Type A is more effective in controlling bacterial contamination. MWDs are critical devices for water treatment in term of technologies, intended use, and sanitization procedures. The adoption of an appropriate drinking water safety plan associated with clear maintenance procedures and periodic environmental monitoring can ensure the safe and healthy operation of these devices.


Subject(s)
Bacteria/isolation & purification , Drinking Water/microbiology , Food Contamination/analysis , Water Microbiology , Water Purification/methods , Colony Count, Microbial , Consumer Product Safety , Drinking Water/standards , Environmental Monitoring , Filtration , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...