Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643494

ABSTRACT

Multiple Myeloma (MM) is characterized by a huge heterogeneity at the molecular level. The RAS/RAF pathway is the most frequently mutated, in about 50% of the patients. However, these mutations are frequently subclonal, suggesting a secondary event. Since these genes are part of our routine next-generation sequencing (NGS) panel, we analyzed >10,000 patients with different plasma cell disorders in order to describe the RAS/RAF landscape. In this large cohort of patients, almost 61% of the patients presented a RAS/RAF mutation at diagnosis or relapse, but much lower frequencies in pre-symptomatic cases. Of note, the mutations were different from that observed in solid tumors (higher proportions of Q61 mutations). In 29 patients with two different mutations, we were able to perform single cell sequencing, showing that in most cases, mutations occurred in different subclones, suggesting an ongoing mutational process. These findings suggest that RAS/RAF pathway is not an attractive target, both on therapeutic and residual disease assessment points of vue.

2.
Immunity ; 56(7): 1631-1648.e10, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37392737

ABSTRACT

CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Cell Differentiation , Cell Proliferation , Receptors, Antigen, T-Cell
3.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37012202

ABSTRACT

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Fatty Acids , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Oxidative Stress , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
4.
J Clin Oncol ; 41(9): 1695-1702, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36343306

ABSTRACT

PURPOSE: Multiple myeloma (MM) is characterized by copy number abnormalities (CNAs), some of which influence patient outcomes and are sometimes observed only at relapse(s), suggesting their acquisition during tumor evolution. However, the presence of micro-subclones may be missed in bulk analyses. Here, we use single-cell genomics to determine how often these high-risk events are missed at diagnosis and selected at relapse. MATERIALS AND METHODS: We analyzed 81 patients with plasma cell dyscrasias using single-cell CNA sequencing. Sixty-six patients were selected at diagnosis, nine at first relapse, and six in presymptomatic stages. A total of 956 newly diagnosed patients with MM and patients with first relapse MM have been identified retrospectively with required cytogenetic data to evaluate enrichment of CNA risk events and survival impact. RESULTS: A total of 52,176 MM cells were analyzed. Seventy-four patients (91%) had 2-16 subclones. Among these patients, 28.7% had a subclone with high-risk features (del(17p), del(1p32), and 1q gain) at diagnosis. In a patient with a subclonal 1q gain at diagnosis, we analyzed the diagnosis, postinduction, and first relapse samples, which showed a rise of the high-risk 1q gain subclone (16%, 70%, and 92%, respectively). In our clinical database, we found that the 1q gain frequency increased from 30.2% at diagnosis to 43.6% at relapse (odds ratio, 1.78; 95% CI, 1.58 to 2.00). We subsequently performed survival analyses, which showed that the progression-free and overall survival curves were superimposable between patients who had the 1q gain from diagnosis and those who seemingly acquired it at relapse. This strongly suggests that many patients had 1q gains at diagnosis in microclones that were missed by bulk analyses. CONCLUSION: These data suggest that identifying these scarce aggressive cells may necessitate more aggressive treatment as early as diagnosis to prevent them from becoming the dominant clone.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Prognosis , Survival Analysis , Chromosome Aberrations
5.
Nat Cancer ; 2(11): 1204-1223, 2021 11.
Article in English | MEDLINE | ID: mdl-35122057

ABSTRACT

Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a 'MitoScore' signature, which identifies high mitochondrial oxidative phosphorylation in vivo and in patients with AML. Primary AML cells with cytarabine (AraC) resistance and a high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) + AraC (but not to VEN + azacytidine). Single-cell transcriptomics of VEN + AraC-residual cell populations revealed adaptive resistance associated with changes in oxidative phosphorylation, electron transport chain complex and the TP53 pathway. Accordingly, treatment of VEN + AraC-resistant AML cells with electron transport chain complex inhibitors, pyruvate dehydrogenase inhibitors or mitochondrial ClpP protease agonists substantially delayed relapse following VEN + AraC. These findings highlight the central role of mitochondrial adaptation during AML therapy and provide a scientific rationale for alternating VEN + azacytidine with VEN + AraC in patients with a high MitoScore and to target mitochondrial metabolism to enhance the sensitivity of AML cells to currently approved therapies.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cytarabine/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...