Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35630175

ABSTRACT

Droplets generated in microfluidic channels are effective self-contained micromixers and micro-reactors for use in a multiplicity of chemical synthesis and bioanalytical applications. Droplet microfluidic systems have the ability to generate multitudes of droplets with well-defined reagent volumes and narrow size distributions, providing a means for the replication of mixing within each droplet and thus the scaling of processes. Numerical modelling using computational fluid dynamics (CFD) is a useful technique for analysing and understanding the internal mixing in microfluidic droplets. We present and demonstrate a CFD method for modelling and simulating mixing between two species within a droplet travelling in straight microchannel, using a two-phase moving frame of reference approach. Finite element and level set methods were utilised to solve the equations governing the coupled physics between two-phase flow and mass transport of the chemical species. This approach had not been previously demonstrated for the problem of mixing in droplet microfluidics and requires less computational resources compared to the conventional fixed frame of reference approach. The key conclusions of this work are: (1) a limitation of this method exists for flow conditions where the droplet mobility approaches unity, due to the moving wall boundary condition, which results in an untenable solution under those conditions; (2) the efficiency of the mixing declines as the length of the droplet or plug increases; (3) the initial orientation of the droplet influences the mixing and the transverse orientation provides better mixing performance than the axial orientation and; (4) the recirculation inside the droplet depends on the superficial velocity and the viscosity ratio.

2.
Biomicrofluidics ; 5(3): 36502-365026, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22662049

ABSTRACT

A method to easily manufacture and assemble a polydimethylsiloxane (PDMS) based microfluidic device is described. The method uses low cost materials and re-usable laser cut polymethyl methacrylate (PMMA) parts. In addition, the thickness of PDMS layers can be controlled and both PDMS layer surfaces are flat, which allows for multi-layer PDMS structures to be assembled. The use of mechanical clamping to seal the structure allows for easy cleaning and re-use of the manufactured part as it can be taken apart at any time. In this way, selected layers can be re-used or replaced. The process described can be easily adopted and utilised without the need for any costly clean room facilities or equipment such as oxygen bonders, making it ideal for laboratories, universities, and classrooms exploring microfluidics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...