Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 351(10): e1800100, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30137687

ABSTRACT

Different studies reported that genetic predisposition or metabolic dysfunction are the risk factors for cancer. Infectious parasitic diseases were listed among factors that predispose to cancer. Because of the resemblance between the life cycle of cancer cells and some parasites, this study aimed to prepare pyran derivatives with cytotoxic and antiprotozoal potencies. Therefore, 7 chromenes, 10 pyranocoumarins, and an unexpected intermediate were obtained from a multi-reagent one-pot reaction. These compounds were evaluated for their cytotoxicity on sensitive and resistant leukemia cancer cells lines and against two protozoan parasites, namely Trypanosoma cruzi and Leishmania amazonensis amastigote. Promising cytotoxicity (IC50 values of less than 1 µM) was obtained for two of the synthetic products (12 and 15). Compound 12 induced apoptosis and cell cycle arrest in CCRF-CEM leukemia cells in G0/G1 while compound 15 and doxorubicin induced apoptosis and arrest in the S and G2/M phases. Ten of these products showed trypanocidal activity, while only five of them were weakly active on L. amazonensis. Three of the obtained pyrans showed significant cytotoxicity and antitrypanocidal activity, simultaneously. Nevertheless, all antiparasitic compounds revealed potency with low selectivity toward THP-1 cells used as host.


Subject(s)
Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Benzopyrans/pharmacology , Leishmania/drug effects , Trypanosoma cruzi/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Apoptosis/drug effects , Benzopyrans/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , THP-1 Cells , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL